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Chapter 9

Interpreting Computational Neural Network

QSAR Models: A Detailed Interpretation of the

Weights and Biases

9.1 Introduction

As we have seen in the preceding chapters, interpretability plays an important

role in the QAR modeling process. The statistical and machine learning literature pro-

vide a wide variety of modeling methods to choose from, ranging from linear regression

models to more complex techniques such as neural networks and random forests. The

modeling techniques differ in a number of ways such as complexity, flexibility, accuracy

and speed. A very important aspect of these models is interpretability. In the absence of

an interpretation, the model can be used only for predictive purposes. This implies that

structure-property information encoded in the model is not further utilized. In many

cases, such as high throughput screens, such usage of the model is sufficient. But when

models are developed with the aim of providing input to structure based drug design,

more detailed information than just predicted values must be extracted from the model.

That is, one would like to know what structure-property trends have been captured by

the model. In other words, we would like to understand how the model correlates the

input descriptors to the predicted activity. Furthermore, some measure of interpretabil-

ity is needed to provide a sense of confidence regarding the soundness of the model, and

it would provide evidence to support the use of a particular model in a given instance.

The degree of interpretability of QSAR models varies, depending on the modeling

technique. In some cases, such as linear regression models, interpretation is relatively

simple and can be carried out using a PLS technique developed by Stanton1 and described

in Chapter 3. In this case, the interpretation is detailed in the sense that one can extract

information about how individual descriptors correlate to the predicted property. A

This work was published as Guha, R.; Jurs, P.C., “Interpreting Computational Neural Network
QSAR Models: A Detailed Interpretation of the Weights and Biases”, J. Chem. Inf. Model.,
2005, ASAP.
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number of applications of this technique have been reported.1–3 In other models, the

interpretation is not as detailed. This is the case for random forest4 models. For these

types of models interpretation is restricted to a summary of descriptor importance.5 This

summary ranks descriptors in order of importance to predictive ability. Thus, one does

not get a detailed view of how the descriptors contribute to the predicted property.

The high predictive ability and flexibility of CNN models have made them very

attractive to QSAR modelers. However the lack of interpretability has led to the general

characterization of CNN models as black boxes. A number of attempts to extract in-

formation regarding the internal working of CNN models have been described. In some

cases these methods are in the form of rule extractions.6–8 These methods can be heuris-

tic9–11 in nature or analytical.12 A number of these methods are focussed on specific

types of neural networks.8,9,13 Chastrette et al.13 describe a method for interpreting a

CNN model describing structure-musk odor relationships. Their approach was limited

to a measure of contribution of the descriptors to the predicted value. Hervás et al.14

describe a method interpretation that is focussed on a pruning algorithm. As a result

the method is not applicable to CNN models developed using alternative algorithms.

The analysis of descriptor contributions is an approach that has been followed.

Some of these approaches, such as that described by Chastrette et al.13 provide only

a broad view of which descriptors are important. Other approaches, however, have

been devised that allow for a measure of correlation between input descriptors and the

network output. An example is the method described by Mak et al.,15 in which a form

for the relative contribution of input neurons to the output value is developed. The

relative values are then divided to obtain a measure of contribution to each hidden layer

neuron. The result of this approach is that the contributions of the input neurons can be

divided into negative or positive contributions. Chapter 8 described a method to obtain

a measure of descriptor importance for neural network models based on a sensitivity

analysis16 of a trained network. Though similar in intent to the methods described by

Chastrette et al. and Mak et al., the method provides an easily visualization method

to understand which descriptors play the main role in the models predictive ability.

However, the method also shares the main shortcoming with other approaches to measure

descriptor importance (or contributions) in that it provides a very broad view and is not

capable of describing in detail, the nature of the correlation between a given descriptor

and the network output.
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In this chapter we describe a method to interpret a CNN model in a detailed

manner by considering the final, optimized weights and biases. As a result of this ap-

proach, the method is generalizable to different types of CNN algorithms that result in

a set of weights and biases. Currently the method is restricted to the interpretation of

3-layer, feed-forward networks, though extension to more hidden layers is possible. The

methodology is similar in concept to the PLS technique in that it interprets the weight

matrix in a manner analogous to the interpretation of the X-weights in the PLS analysis.

The method also shares certain characteristics with the method described by Mak et al.

The next section describes the methodology in detail.

9.2 Methodology

The detailed CNN interpretation methodology was developed by attempting to

mimic the procedure used for the interpretation of linear models using partial least

squares. Though we have described the PLS methodology in detail in Chapter 3, we

provide a short summary below.

The descriptors for the linear model are used to build a PLS model using a leave-

one-out cross-validation method. The PLS model consists of a number of latent variables

(components) which are linear combinations of the original descriptors. The number of

components is equal to the number of input descriptors (assuming no overfitting has

occurred). The results of the PLS analysis are summarized by two tables. The first table

tabulates the cumulative variance and Q2 values for each component. In many cases the

first few components explain a large portion of the total variance (70% - 90%). As a

result, the remaining components can be ignored. The second table lists the X-weights for

each component. These are the weights used to linearly combine each input descriptor in

a given component. Analysis of these weights allows one to understand how significantly,

and in which direction, a given descriptor is correlated to the value predicted by that

component. Finally, using plots of X-scores (projections of the observations along the

rotated axes) versus Y-scores (that portion of the observed Y that is explained by that

component) one can focus on the correlations between structural features and property

for specific molecules.
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9.2.1 Preliminaries

The CNN interpretation method is based on the assumption that the hidden layer

neurons are analogous to the latent variables in a PLS model. Clearly, this is not a one-

to-one correspondence due to the sigmoidal transfer function employed for each neuron

in the CNN. By considering the weights connecting the input descriptors to a specific

hidden layer neuron, we can then interpret how each descriptor correlates to the output

of that hidden layer neuron. Finally, by defining the contribution of each hidden layer

neuron to the output value of the network, we can determine which hidden layer neurons

are the most significant and which ones can be ignored. The problem of interpreting a

CNN model involves understanding how the output value of the network varies with the

input values. This in turn is dependent on how the weights and biases modify the input

values as they pass through the layers on the network. First, we present a brief analysis

of how the input values will, in general, relate to the output value. We restrict ourselves

to a 3-layer, fully-connected, feed-forward network.

The output value of a CNN for a given set of input values is obtained via a

sigmoidal transfer function. Thus we can write the output value, O, as

O =
1

1 + exp(−X)
(9.1)

where X is the sum of weighted outputs from the hidden layer neurons. Denoting the

output of each hidden layer neuron by xH
j

, 1 ≤ j ≤ nH , where nH is the number of

hidden layer neurons, and the weight between each hidden layer neuron and the output

neuron as wH
j

, 1 ≤ j ≤ nH , we can write X as,

X =
nH∑
j=1

wH
j

xH
j

The above equation does not include a bias term and we provide a justification for

ignoring the bias term below. Eq. 9.1 can be rewritten as

O =
1

1 + exp(−
∑nH

j=1 wH
j

xH
j

)

1
O

∼ exp(−
nH∑
j=1

wH
j

xH
j

)

O ∼ exp
(
wH

1
xH

1
+ · · ·+ wH

nH
xH

nH

)
(9.2)



245

where we drop the constant term since it does not affect the general trend between the

output value and exponential term. From Eq. 9.2 we can see that O is a monotonic

increasing function of the individual components, wh
j
xh

j
, of the argument. Keeping in

mind that the output from each hidden neuron will be a positive number, Eq. 9.2 indicates

that, if a certain hidden neuron has a large weight between itself and the output neuron,

then the output from that hidden neuron will dominate the sum. This allows us to order

the hidden neurons based on their contribution to the output value. Furthermore the

sign of the weights indicate how the hidden neuron will affect the output value. Negative

weights will correlate to smaller values of the output value and vice versa for positive

weights.

9.2.2 Combining Weights

The above discussion applies to connections between the hidden layer and output

layer. However it is clear that the same reasoning can be applied to the connections

between the input and hidden layers. Thus, one way to consider the effect of the weights

is to realise that the weights are cumulative. We denote the weights between the input

layer neuron j and the hidden layer neuron i as

wij , 1 ≤ i ≤ nI and 1 ≤ j ≤ nH

where nI is the number of input layer neurons (i.e., descriptors). Now, let us consider

the value of the first input descriptor (for a specific observation). As this value goes

from the first input neuron to the first hidden layer neuron, it will be affected by the

weight, w11. The value from the first hidden neuron is passed to the output neuron and

is affected by the weight wH
1

. Thus we can qualitatively say, that, as the input value

passes from the input layer to the output layer, it is affected by a weight denoted by

w11w
H
1

. This is because a large positive value of w11 would cause the output of the first

hidden neuron to be positively correlated with the first input descriptor. If wH
1

is also

a large positive weight then the final output value would be positively correlated with

the output value of the first hidden neuron and thus would also be positively correlated

with the value of the first input neuron. Thus, we can consider the network as consisting

of a connection between the first input neuron and the output neuron weighted by an

effective weight equal to w11w
H
1

.

Similarly, for the same input value passing through the second hidden neuron and

then to the output neuron, we can write the corresponding effective weight as w12w
H
2

.
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In general the effective weight between the ith input neuron and the output neuron,

via the jth hidden layer neuron will be wijw
H
j

. Clearly the effective weights are gross

simplifications, since we neglect the intermediate summations (over all neurons in a layer)

and transfer functions. However as shown in the previous section we can see that the

output value of the transfer function is a monotonic increasing function of the product

of the weights and neuron outputs. More importantly, our main interest is in the sign

of the effective weight, rather than its absolute value. The absolute value of the weights

between the hidden layer neurons and the output neuron might be one indication of

which hidden neuron is more important that another in terms of contribution to the

final output value. However as pointed out above, the sign of the weights indicates the

trend of the output value. Thus for example if the weights w11 and wH
1

are both positive

we can expect that input values flowing down that path will show a positive correlation

with the output value. If w11 and wH
1

are positive and negative respectively, one would

expect that the net effect would be a negative correlation between the input values and

output values.

9.2.3 Interpreting Effective weights

We can now consider two possible ways to use the effective weights to interpret the

behavior of the CNN. From the preceding discussion we can write the effective weights in

tabular form as shown in Table 9.1, where H1, H2 and H3 represent the first, second and

third hidden neurons and I1, I2, I3 and I4 represent the input neurons. The first step in

interpreting the effective weight matrix is to decide the order of the hidden layer neurons,

in terms of their contributions to the output value of the net. We discuss hidden layer

neuron contributions in detail below and for now we assume that the order of importance

of the hidden layer neurons is given by H1 > H2 > H3. Thus, the first hidden neuron is

the main contributor to the output value. Next we consider the first column. If the value

in a given row is higher than the others it implies that the corresponding input neuron

will contribute more to the hidden layer neurons. Since we have already ordered the

hidden neurons in terms of their contribution to the output, this means that we can say

(indirectly) which input neuron is contributing more to the output. Furthermore, the

sign of the element will indicate whether high values of that input neuron correspond to

high or low values of the output value. The approach is similar to the PLS interpretation

scheme, especially if we consider the hidden layer neurons to be a transformed (via the

transfer function) set of latent variables.
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9.2.4 The Bias Term

In the preceding discussion we have ignored the role of the bias term when con-

sidering effective weights. We now provide a justification for this approach. The input

to a given hidden neuron consists of the weighted outputs of the input neurons plus the

bias term. As a result, the effective weights for the input neurons, as they pass through

a given hidden neuron, should consider the bias term. However, if we consider the effec-

tive weights for individual input neurons, we must partition the bias term between these

input neurons. The simplest way of partitioning the bias term would be to simply divide

the bias term evenly between the input neurons. As a result, for nI input neurons the

effective weights between them and the jth hidden neuron would include bj/nI where bj

is the bias term for that hidden neuron. The net result is that for the jth hidden neuron,

the effect of the bias term would be the same for all input neurons connected to it. As

a result, it is equivalent to ignoring the bias term when considering effective weights.

Clearly this is based on the assumption that the bias for a given hidden neuron can be

equipartitioned between the input neurons. A priori, there is no reason for choosing an

alternative partitioning scheme.

A more rigorous approach is to consider that fact that a bias term is effectively an

intercept term. If the hidden neurons contained linear transfer functions, the bias term is

precisely an intercept term. The inputs to a hidden neurons form a p-dimensional space

and the result of the activation function for a hidden neuron is to draw a hyperplane

through the input space. One side of this hyperplane represents the off output and the

other side represents the on output. This description also holds for sigmoidal activation

functions in which case the two sides of the hyperplane would correspond to the extreme

ends of the functions domain. The region close to the hyperplane would correspond

to the intermediate values of the activation function. In the absence of the bias term

this hyperplane passes through the origin of the input space. However, when bias terms

are included, they merely translate the hyperplanes from the origin. That is, they do

not change the form of the hyperplane. In effect, the bias term is a constant. Now,

one property of neural networks (more specifically, multi layer perceptrons) is universal

function approximation.17 For this to be true, the bias term must be included. However,

it has been shown by Hornik18 that a sufficient condition for this property to be true

in the absence of bias terms is that the derivatives of the activation function must be

non-zero at the origin. For a sigmoidal activation function, this implies that the bias

term can simply be a constant value as opposed to a trainable weight. Clearly, if the
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bias term can be considered as a constant (i.e., training is not required), this implies

that it would not affect the interpretation of the optimized weights. Thus, viewing the

bias terms in the context of partitioning or in the context of the universal approximation

property indicates that development of the effective weights without including the bias

terms is a valid approach.

9.2.5 Ranking Hidden Neurons

An important component of the interpretation method is the ranking of the hidden

neurons, which is necessary as all hidden neurons will not contribute to the output value

equally. The contributions of the input neurons to the output value, via those hidden

neurons with lower contributions, will be diminished. A number of methods to determine

the relative contribution of input neurons have been described in the literature. These

methods can be applied to the case of the hidden layer. For example, the method

described by Garson19 calculates a measure of the relative contribution of the ith input

neuron to the kth output neuron and places more stress on the connections between

the hidden and output layers. Yoon et al20 extended this approach but still focussed on

contributions of input descriptors to the output via the hidden layer neurons. A common

feature of both approaches is their empirical nature. That is, the final contribution values

are obtained by using the original training set.

Our first attempt at designing a ranking method followed the approach of Garson.

In this case we defined the squared relative contribution of the jth hidden neuron for the

kth example in the training set to be

SRCkj =

(
kxH

j
wH

j

)2

∑nH
j=1

(
kxH

j
wH

j

)2
+ b2

(9.3)

where xH
j

and wH
j

are the output and weight to the output neuron for of the jth hidden

neuron respectively, b is the bias term for the output neuron and nH is the number of

hidden layer neurons. The superscript k indicates that the output of the jth neuron is for

the kth example. The final value of the squared relative contribution for the jth hidden

neuron was given by

SRCj =
1
n

n∑
k=1

SRCkj (9.4)
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where n is the number of examples in the training set. However, interpretations devel-

oped from the above ranking were not consistent with the interpretations obtained from

the linear models.

An alternative approach that we considered was not empirical in nature. That

is, it did not directly utilize the dataset used to build the model. In this approach we

considered the fact that the contributions of a given hidden layer neuron depends not

only on the nature of its contribution to the output neuron, but also on the nature of

the contributions to the hidden neuron from the preceding input layer. This is implicitly

considered in the empirical approach described. In this approach we considered the

overall contribution of a hidden neuron to the output by taking into account all the

effective weights associated with this hidden neuron. That is, the contribution of the jth

hidden neuron was initially defined as

CVj =
1
nI

nI∑
i=1

wijw
H
j

(9.5)

where nI is the number of input neurons, wij is the weight between the ith input neu-

ron and jth hidden neuron and wH
j

is the weight between the jth hidden neuron and

the output neuron. The above equation simply represents the column means of the ef-

fective weight matrix. The resultant values are signed and the absolute value of these

contribution values can be used to rank the hidden neurons. However, to make the rela-

tive contributions of the hidden neurons clearer we considered the values obtained from

Eq. 9.5 as squared contribution values defined as

SCVj =
CV 2

j∑nH
j=1 CV 2

j

(9.6)

The result of this transformation is that the SCVj values sum to 1.0. Consequently, the

SCVj values provide a clearer view of the contributions of the hidden neurons and allow

us to possibly ignore hidden neurons that have very small values of SCVj .

One aspect of this approach is that we do not take into account the bias terms.

Clearly, this approach is not utilizing all the information present within the neural net-

work. There are two reasons why the bias term should be taken into account when

ranking hidden neurons. First, most reported measures of contribution are empirical

in nature and thus implicitly take into account the bias terms. Second, since we are

focussing on the contribution made by a given hidden neuron, we need to consider all
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the effects acting through the hidden neuron. Since the bias terms corresponding to

the hidden layer can be considered as weights coming form an extra (constant) input

neuron, the effective weights being summed in Eq. 9.5, should include an extra term

corresponding to the bias term for that hidden neuron. Thus if we denote the bias term

for the jth hidden neuron as bj then Eq. 9.5 can be rewritten as

CVj =
1

nI + 1

(
nI∑
i=1

wijw
H
j

+ bjw
H
j

)
(9.7)

Using this equation, values for SCVj can be calculated using Eq. 9.6

9.2.6 Validation

To ensure that the methodology provides valid interpretations we compared the

results of the method to interpretations developed for linear models. For a given QSAR

problem, the descriptor subsets that lead to the best linear model are generally not the

same as those that lead to the best CNN model. However, comparing interpretations

of CNN and linear models with different descriptors would lead to a less accurate com-

parison. Furthermore, one would expect that given the same descriptors, both CNN

and linear models should capture the structure-property trends present in the dataset

in a similar fashion. If the interpretation of these trends in the CNN model does not

match those developed using the linear model, the discrepancy would indicate that the

CNN interpretation methodology is flawed. As a result, we developed the CNN mod-

els using the same subset of descriptors that were present in the corresponding linear

models. The CNN models built using these descriptors are not necessarily the best (in

terms of training set and prediction set performance). However, this work focusses on

the extraction of structure-property trends in a human understandable format rather

than investigating the predictive power of the CNN models. In this respect we feel that

the comparison of the CNN interpretations to those made for linear models using the

same set of descriptors is a valid procedure.

The linear models were developed using the ADAPT methodology, described in

Chapter 3. This involved the use of a simulated annealing21,22 algorithm to search for

good descriptor subsets. The models were then interpreted using the PLS analysis tech-

nique described above. As mentioned, the CNN models used the same descriptors that

were present in their corresponding linear models. For each dataset a number of CNN

models with different architectures (i.e., different numbers of hidden neurons) were built.
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The architectures were limited by considering a rule of thumb that indicates that the

total number of parameters (weights and biases) should not be more than half the size of

the training set. The final architecture for each CNN model was chosen by considering

the cost function defined by Eq. 2.6. The architecture that gave the lowest value of the

cost function was chosen as the best CNN model for that dataset.

9.3 Datasets

We considered three datasets. The first dataset consisted of a 147 member subset

of the DIPPR boiling point dataset studied by Goll et al.23 The dependent variable

for this dataset ranged from 145.1 K to 653.1 K. The original work reported linear

and nonlinear models. However no interpretations of these models were provided. We

consider the linear model for this dataset that was described in Chapter 8. Though that

chapter also reported a CNN model, we develop a new CNN model so that we would be

able to obtain a more direct comparison between the final interpretations as described

above.

The second dataset consisted of 97 compounds studied by Stanton et al.24 These

compounds were studied for their ability to cross the blood-brain barrier and the modeled

property was the logarithm of the blood-brain partition coefficient (log(BB)). The

dependent variable in this dataset ranged from −2.00 to 1.44 log units. The previously

published work reported a linear model and an associated PLS based interpretation.

The final dataset consisted of 136 compounds studied by Patel et al.25 The work

considered the skin permeability of the 136 compounds. The dependent variable for this

dataset was the logarithm of the permeability coefficient, log(Kp) and ranged from −5.03

to −0.85 log units. Though the paper reported a set of linear models, we developed

a new linear model using a variety of descriptors including hydrophobic surface area

descriptors.24,26 A PLS analysis of this model is also presented for comparison to the

interpretation of the corresponding CNN model.

9.4 Results

For each dataset we present a summary of the linear model and the associated

PLS interpretation. We then describe the neural network model built using the dataset

and descriptors from the linear models, and present the corresponding interpretation.

For all models the descriptors are summarized in Table 9.2.
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9.4.1 DIPPR Dataset

The statistics of the linear model are summarized in Table 9.3. The descriptors

are shown in Table 9.2. The R2 and RMSE values were 0.98 and 9.98, respectively.

The F -statistics (on 7 and 139 degrees of freedom) was 1001 which is greater than the

critical value of 2.78 (α = 0.05 level). The model is thus statistically valid. Tables

9.4 and 9.5 summarize the results of the PLS analysis for the linear model. The Q2

column in Table 9.4 indicates that the first two components explain approximately 95%

of the structure-property relationship (SPR) encoded by the model. As a result, the

bulk of the linear interpretation is provided by these components. If we now look at the

column for the first component in Table 9.5 we see that the most important descriptors

are MW (molecular weight) and V4P-5 (4th order valence path connectivity index).

Both these descriptors characterize molecular size and it is evident that larger values of

these descriptors correlate to higher values of the boiling point. Considering the second

component we see that the most important descriptors are now RSHM and PNSA-3.

The former characterizes hydrogen bonding ability and the latter is a measure of the

charge weighted partial negative surface area. The negative sign for PNSA-3 indicates

that molecules with smaller values of the descriptor (i.e., having smaller charge weighted

partial negative surface area) should have lower boiling points. On the other hand, the

positive sign for RSHM indicates that molecules with better hydrogen bonding ability

should have higher boiling points, which is in accord with experimental observations.

In summary, the linear model encodes two main SPR’s. The first trend is dispersion

forces, in which atomic contributions to these forces are individually weak but for larger

molecules the greater number of interactions leads to a larger attractive force. The

other main trend is the attractive forces mainly due to hydrogen bonding. Clearly, this

description of the SPR is not new or novel. However now that we know what type of

descriptors contribute to the SPR and the nature of the correlations we can compare

these observations with those obtained from the CNN model.

The CNN model that was developed for this dataset had a 7–4–1 architecure.

As described above, the descriptors for the CNN model were the same as those used in

the linear model. The statistics for the training, cross-validation and prediction sets are

shown in Table 9.6. The effective weight matrix for this model is shown in Table 9.7. The

columns correspond to the hidden neurons and are ordered by the SCV values described

previously, and they are shown in the last row of the table. The SCV values indicate

that the first and third hidden neurons are the most important, whereas the second
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and fourth hidden neurons play a lesser role. The use of the SCV values in choosing

which hidden neurons to concentrate on is analogous to the use of the Q2 value to focus

on components in the PLS approach. Considering the first column in Table 9.7 we see

that the most weighted descriptors are V4P-4, RSHM and MW. All three descriptors

have positive weights indicating a that these descriptors are positively correlated with

boiling point. When we consider the second column (the third hidden neuron) we see

that the two of the three most important descriptors are the same as in the first hidden

neuron. Since these have the same signs as before, we may ignore them and consider the

most important descriptor not already considered. This descriptor is PNSA-3, and it is

negatively correlated to the boiling point. It is clear that the types of descriptors, as well

as their correlations, that play the main roles in the SPR encoded by the CNN model

are the same as described by the linear model. The main difference is that the relative

importance of the descriptors, over the hidden neurons being considered, are different

from that described in the linear model. For example, the linear model indicates that

PNSA-3 plays a very important role in the SPR, whereas the CNN accords it a less

significant role. On the other hand, the hydrogen bonding ability described by RSHM

plays a very important role in the CNN, making up for the absence of the charged surface

area descriptor. Similarly, the relative importance of the V4P-5 and MW descriptors are

swapped in the two interpretations, but since both characterize size, the main SPR trends

for the dataset are explained in a similar fashion by both models. These differences are

not unexpected, since the CNN correlates the descriptors in a nonlinear fashion. Thus it

is expected that the relative roles played by each descriptor in the nonlinear relationship

will be different when compared to the linear model. The point to note is, that, though

MW is relegated to a less important role, the main SPR trends extracted from the CNN

model by this interpretation technique are identical to those present in the linear model.

9.4.2 BBB Dataset

The linear model and associated PLS interpretation are described in the original

work.24 However, we summarize the statistical results of the original model in Table

9.8. The R2 for the model was 0.78 and the F -statistic was 80.7 (on 4 and 92 degrees

of freedom) which was greater than the critical value of 2.47 (α = 0.05). The results

of the PLS analysis are presented in Tables 9.9 and 9.10. From Table 9.9 we see that

the first two components explain 76% of the total variance in the observed property

thus allowing us to ignore the remaining components. From Table 9.10 we see that in
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the first component the most weighted descriptors are PNHS-3 (a hydrophobic surface

area descriptor), NDB (count of double bonds) and WNSA-3 (a charged partial surface

area descriptor, characterizing the partial negative surface area). Clearly, larger values

of PNHS-3 and WNSA-3 will correlate to larger values of the property whereas lower

values of NDB will correlate to larger values of the property. In component 2 we see

that WNSA-3 is opposite in sign. This indicates that the second component makes

up for over-predictions made by the first component. Similar reasoning can be applied

to the weight for V4P-5 in the second component. Some large hydrophobic molecules

are under-estimated by component 1. In component 2 however, the positive weight for

V4P-5 (which is a measure of branching and thus size) indicates that larger molecules

will have higher penetration ability. Therefore the second component makes up for

under-estimation of large hydrophobic molecules by the first one. In brief, the SPR

trends captured by the linear model indicate that smaller hydrophobic molecules will

better penetrate the BBB compared to larger hydrophilic molecules. These trends are

discussed in more detail in the original work.24

The CNN model developed for this dataset had a 4–4–1 architecture. The statis-

tics for this model are presented in Table 9.6 and the effective weight matrix is shown in

Table 9.11. The SCV values for the hidden neurons are shown in the last row of Table

9.11. They indicate that the first and second hidden neurons contribute to the bulk of

the SPR encoded by the model. If we consider the weights for the first hidden neuron

(first column) we see, in general, the same correlations as described in the linear model.

Both PNHS-3 and WNSA-3 are positively correlated with the predicted property and

NDB is negatively correlated. However the difference we see here is that V4P-5 is one of

the most important descriptors and is positively correlated with the predicted property.

On the other hand PNHS-3 plays a much smaller role in this model than in the linear

model. If we consider the second hidden neuron (second column), we see that the weight

for V4P-5 is now lower and that for NDB has increased. One can consider this as the

CNN attempting to downplay the increased size effects described by V4P-5. When we

consider the fourth hidden neuron we see that the V4P-5 now has a negative weight and

thus serves to balance the over-estimation of the property for larger molecules made by

the first two hidden neurons. Overall, we see that the main trends described by the CNN

model indicate that fewer double bonds and more hydrophobicity lead to higher ability

to penetrate the BBB, though it does appear that the model focuses on a positive cor-

relation between size and log(BB) values via the V4P-5 descriptor. This is quite similar
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to the conclusions obtained from the PLS interpretation of the linear model. Some dif-

ferences are present - mainly in the context of size (described by V4P-5) and the relative

importance of the descriptors for a given hidden neuron. As described above, this is not

surprising given that the nonlinear relationship between the descriptors generated by the

CNN is significantly different from the linear relationship described by the original re-

gression model. However, the fact that the description of the main SPR trends encoded

within the CNN model compare well with those of the linear model, serve to confirm our

assumption that both models should encode similar trends as well as the validity of this

interpretation technique to extract these trends. Furthermore, the structure-property

trends extracted from both types of models by the repspective interpretation techniques

are consistent with physical descriptions of the factors that are believed to affect the

transport of drugs across the blood brain barrier27,28

9.4.3 Skin Permeability Dataset

This dataset was originally studied by Patel et al.25 where they developed a linear

regression model using 158 compounds. However, owing to the presence of outliers, the

final models were built using 143 compounds. We considered the original 158 compounds

and chose a 136 member subset to work with. The linear model we developed for this

dataset is summarized in Table 9.12. The R2 value for this model was 0.84 and the

F -statistic was 97.5 on 7 and 128 degrees of freedom which was greater than the critical

value of 2.08 (α = 0.05) indicating that the model was statistically valid. We then

developed a PLS interpretation of this linear model and the results of the PLS model

are summarized in Tables 9.13 and 9.14. The Q2 values in Table 9.13 indicate that the

first three components describe the bulk of the SPR. If we now consider Table 9.14 we

see that the most important descriptors in the first component are MOLC-9, FPSA-

2 and RNHS. MOLC-9 represents Balabans J topological index which is derived from

the distance connectivity matrix and characterizes molecular branching. Smaller values

of this descriptor indicate smaller or more linear compounds. The FPSA-2 descriptor

characterizes the relative partial positive surface area. The negative weight for this

descriptor indicates that molecules with smaller partial positive surface areas will be

more active. This descriptor characterizes molecules like 2,4,6-trichlorophenol whose

molecular surface has a large number of partial negative charged regions. Finally the

RNHS descriptor characterizes the hydrophilic surface area. This descriptor serves to

balance the effects of FPSA-2 and this can be seen when comparing the activities for
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2,4,6-trichlorophenol and 3,4-dimethylphenol (Table 9.1). It is clear that both are of

similar size and both have similar activities. However, if FPSA-2 were acting alone, the

high value of this descriptor for 3,4-dimethylphenol (due to the partial positive charges

on the methyl groups) would lead to a significantly lower activity. However, RNHS

indicates that not all small hydrophobic molecules will have negatively charged atoms.

Thus the first components indicates that smaller and more hydrophobic molecules will

exhibit higher activities.

If we now consider the second component we see that the most weighted descrip-

tors are PPHS, SA and WPHS-3. PPHS measures the total hydrophobic surface area

and WPHS-3 is defined as the surface weighted hydrophobic surface area. The positive

weights on these descriptors indicate that a larger hydrophobic surface area is corre-

lated positively with activity. SA, which measures molecular surface area, is positively

weighted indicating larger molecules are more active. The role of this component is to

account for some larger molecules observed to be moderately active (Table 9.2). Es-

sentially, the larger size of these molecules leads to a larger hydrophobic surface area

which enhances permeability. The component thus corrects for the under-estimation of

the larger molecules by component 1 (such as fentanyl and sulfentanil) by taking into

account their higher hydrophobicity and also corrects for the over-estimation of smaller

molecules (such as methanol and urea) by component 1 by taking into account their

lower hydrophobicity.

The third component mainly corrects for the over-estimation of hexachlorobutadi-

ene and hexachloroethane by component 2 due to emphasis on the hydrophobic surface

area. This is corrected for by component 3 by the negative weights for FPSA-2 and

WPHS-3.

Thus the main conclusion that can be drawn from the linear model is that molec-

ular size and hydrophobicity are two key characteristics that appear to explain the ob-

served skin permeability of these compounds. This is consistent with the conclusions of

Patel et al.25 and also with the general understanding regarding the mechanism of skin

permeation.

The CNN model developed for this dataset had a 7–5–1 architecture and the

statistics are reported in Table 9.6. The effective weight matrix is shown in Table 9.15.

In the case of this model, we see that the SCV value for the 5th hidden neuron is nearly

six times larger than that for the next most important neuron. If we consider the most

important hidden neuron (5) we see that the most weighted descriptors are FPSA-2,

NN (the number of nitrogens) and PPHS. The signs of these effective weights are the
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same as described by the PLS analysis of the linear model. That is, these descriptors

have the same effect on the output of the model in both the linear and nonlinear cases.

Thus, the most important hidden neuron indicates that molecules with smaller polar

surface area and larger hydrophobic surface area will exhibit higher activity. Moving

onto the next most important hidden neuron, we see that the most weighted descriptors

are SA, PPHS, MOLC-9. It is clear that this hidden neuron focuses on size effects.

However, the negative weight for surface area indicates that larger molecules will be

more active. This is a valid conclusion since the dataset does indeed have some larger

molecules which are moderately active. This conclusion is further justified by the fact

that a larger molecule would have a correspondingly larger hydrophobic surface area,

which as the positive weight for PPHS indicates, will lead to higher activity. At the

same time, all large molecules do not exhibit high activities. Thus the effect of the SA

descriptor is balanced by the positive weight for the MOLC-9 descriptor. Since larger

values of MOLC-9 correlate to smaller molecules, the effect of the MOLC-9 descriptor

balances the SA descriptor, ensuring that this hidden neuron does not predict all large

molecules as active.

In the next most important hidden neuron (4) we see that the most weighted

descriptors are RNHS, FPSA-2, PPHS and MOLC-9. In this hidden neuron, MOLC-9

describes the effect of size and indicates that smaller molecules will exhibit higher activ-

ity. However, the positive weight FPSA-2 indicates that molecules with larger partially

positive charged surface area will exhibit higher activity. When we also consider the neg-

ative weight for PPHS (indicating more active molecules should have lower hydrophobic

surface area) we see that this neuron focuses mainly on smaller, more polar molecules.

This trend is reinforced to some extent by the negative weight for RNHS. RNHS describes

both hydrophilic and partial negatively charged regions regions of a molecule. Due to

the design of the descriptor, the negative sign on this descriptor indicates that molecules

with smaller partial negatively charged surface area and more hydrophilic atoms will

exhibit relatively higher activities. At the same time if we consider the SCV value for

this hidden neuron we see that it is just 2% of the SCV for the most important hidden

neuron. One would thus expect that this neuron would not provide very detailed infor-

mation regarding the SPR encoded in the model. Similar reasoning can be applied to

the last two columns of Table 9.15.

The interpretation of the CNN model described here matches quite closely with

that of the linear model. The main difference is in the ordering of the important trends.

As described before, this is not surprising due to the nonlinear encoding of the structure
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property relationships by the CNN model. However, though the above description is

quite detailed and by allows us to look at descriptor values for individual observations

and understand why they are predicted to display greater or less skin permeation, a

visual approach to understanding the effects of each hidden neuron, analogous to score

plots1 in the PLS interpretation scheme, would be useful. One approach to this problem

is to generate plots using the effective weights.

9.4.4 Score Plots

As described above, the use of the effective weights linearizes the neural network.

In effect, the network is transformed into a set of connections between input descriptors

and the output neuron, ignoring nonlinear transfer functions. The pseudo-network can

be used to generate a set of score values for each hidden neuron. For the kth member of

the dataset, the score for that member using the jth hidden neuron can be defined as

scorekj =
nI∑
i=1

wijw
H
j

xki (9.8)

where wijw
H
j

is simply the effective weight for the ith input neuron (see Table 9.1), nI

is the number of input descriptors and xki is the value of the ith descriptor for the kth

member of the dataset. The result of Eq. 9.8 is that for each hidden neuron, a set of

scores are obtained for the dataset. Clearly, these are not meant to quantitatively model

the observed properties well. However, our interest in lies in the qualitative behavior

of the scores. That is, we expect that if a compound has a high observed activity, its

score value should be high and vice versa for compounds with low observed activity.

Thus a plot of the scores for a given hidden neuron versus the observed property should

lie along the 1:1. Points lying in the lower right quadrant would represent compounds

over-estimated by the hidden neuron and points lying the in the upper left quadrant

would represent compounds under-estimated by the hidden neuron.

We tested this approach by creating score plots for the three most important

hidden neurons for the CNN model developed for the skin permeability dataset. These

are shown in Figs. 9.5, 9.6 and 9.7. Considering the plot for the 5th hidden neuron

we see that the plot does exhibit the behavior we expect. Compounds 21, 43 and 75

are predicted as active and 42, 46 and 135 are predicted as inactive. The structures

for these compounds are shown in Fig. 9.3. As described previously, active compounds

will be characterized by smaller size and increased hydrophobicity. As Fig. 9.3 shows,
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active compounds do indeed have a hydrophobic benzene ring. In contrast the inactive

compounds are generally larger and, more significantly, have a number of polar regions.

An interesting case is urea (compound 135). This is a very small compound, but it

is dominated by polar groups, responsible for hydrogen bonding. The fact that the

neuron predicts this compound correctly as inactive is due to the fact that this neuron

mainly stresses the FPSA-2 and NN descriptors. As seen from Table 9.15, the negative

weights indicate that a larger number of polar groups would inhibit activity. As a result,

though compound 135 is small, the polar effects outweigh the size effect. Fig. 9.5 also

indicates that compounds 81, 114, 69 and 77 are all mispredicted. The first two are

over-estimated and the last two are under-estimated.

If we now consider the score plot for the 2nd hidden neuron in Fig. 9.6, we see

the four mispredicted compounds, mentioned above, are now more correctly predicted.

However 81 does appear to be over-estimated. Apart from these cases, the majority of the

compounds do not appear to be well predicted. We believe that this can be explained

by the very low contribution value of this hidden neuron compare to the 5th hidden

neuron. Due to the very low SCV value for this neuron, we believe that it does not have

significant explanatory power. The structures of the active and inactive compounds are

compared in Fig. 9.4. As described above, the main focus of the 2nd hidden neuron is to

account for compounds which are relatively larger but also moderately active. As can be

seen from the structures, though compounds are 78, 81 and 114 are significantly larger

than the active compounds in the preceding component, they are indeed moderately

active. Correspondingly, this hidden neuron is also able to account for the low activity

of a number of small compounds (72 and 77). Though this hidden neuron mispredicts

a number of compounds, the majority have already correctly predicted in the preceding

hidden neuron. A number of them, such as 87, are corrected by the next most important

hidden neuron.

Considering the score plot for the 4th hidden neuron we see that, though it does

correctly predict a number of compounds as active, it performs poorly on inactive com-

pounds. Once again, we believe that the low contribution value (1% of the SCV of the

most important hidden neuron) indicates that it will not have significant explanatory

power. However, it does correct for the misprediction of 87 by the 2nd hidden neuron.

In addition, compound 81 is now shifted closer to the 1:1 line, correcting for the slight

overestimation by the preceding hidden neuron. Score plots for the remaining hidden

neurons can be similarly analysed, though we observed that they did not explain any
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significant trends and rather corrected for a few mispredictions by the preceding 3 hidden

neurons.

The above discussion shows that the score plots derived from the effective weights

help provide a more visual approach to the interpretation of a CNN model. Coupled

with an analysis of the effective weight table, a CNN model can be interpreted in a very

focused, compound-wise manner.

9.5 Discussion & Conclusions

The CNN interpretation methodology that we have presented provides a means for

using CNN models both for predictive purposes as well as for understanding structure-

property trends present in the dataset. The methodology is similar in concept to the

PLS interpretation method for linear regression models. The analogy to the PLS method

is strengthened when we consider that the hidden neurons are analogous to latent vari-

ables (and in the case of linear transfer functions, are identical). Though a number of

approaches to understanding a CNN model exist in the literature, our approach provides

a detailed view of the effect of the input descriptors as they act via each hidden neu-

ron. Furthermore, previous approaches are empirical in the sense that they require the

direct use of the training set to determine the importance of input or hidden neurons.

The method described here avoids this by making use of the effective weights only. A

justification for this approach is that the weights and biases in the final CNN model are

derived from the structure-property trends present in the data. As a result the opti-

mized weights and biases already contain the information regarding the SPR’s and thus

subsequent use of the training set to develop the interpretation is unnecessary. However,

the training set is used to generate the hidden neuron score plots which can be used to

focus on the contributions of individual hidden neurons to the overall predictive behavior

of the model and understand the behavior of the hidden neurons by considering specific

compounds.

The method was validated on three datasets covering physical and biological prop-

erties. Interpretations from the CNN model were compared to linear models built for

these datasets (using the same descriptors that were present in the CNN model) and

it can be seen that the structure property trends described by both models are in very

close agreement. The main differences between the interpretations is in the importance

ascribed to specific descriptors. That is, the most important descriptor in the most im-

portant latent variable in the PLS interpretation might not occupy the same position in
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the CNN interpretation. This is not surprising due to the fact that the neural network

combines the input descriptors nonlinearly and thus the role of the individual descriptors

in the nonlinear relationship may be different from that played in a linear relationship.

Another important aspect of this study was that we considered CNN models which

contained the same descriptors as the linear models. The linear models were developed

using a genetic algorithm for feature selection and were thus optimal linear models. This

is not the case for the corresponding neural network models. This is due to the fact that,

in general, when a CNN routine is linked to the genetic algorithm, the optimal descriptor

subsets differ from the case where the objective function for the genetic algorithm is a

linear regression function. As a result, in the examples we considered, the CNN models

were not necessarily optimal and hence the interpretations may differ to some extent

when optimal models are built for the datasets. However structure property trends are

a feature of the data rather than the model describing the data. Thus even if optimal

descriptor subsets are considered, it is expected that these descriptors will capture the

structure property trends present in the dataset, albeit with greater accuracy. Hence, it

is expected that interpretations from the optimal CNN models will not differ significantly

from those described here.

However, there is one aspect that should be considered when interpreting CNN

models using this method. The definition of effective weights ignores the effect of the

nonlinear transfer function for each neuron. In effect, the effective weights linearize the

model. As a result the interpretation does not provide a full description of the nonlinear

relationships between structural features and the property. That is, some information

regarding the encoded SPR is lost. We feel that the tradeoff between interpretability

and information loss is justified due to the simple nature of method. To fully describe

the nonlinear encoding of an SPR would essentially require that the CNN model be

analyzed to generate a functional form corresponding to the encoded SPR. The neu-

ral network literature describes a number of approaches to rule extraction in the form

of if-then rules.8–11,29 as well as some instances of analytical rule extraction.12,30,31 As

mentioned previously, most of the previous approaches to the interpretation of neural

networks or extraction of rules from neural networks are focused on specific types of

neural network algorithms. In addition, a number of the rule extraction methods de-

scribed in the literature are carried out by analysing the neural network with the help of

a genetic algorithm29,32 or by decision trees,11 adding an extra layer of complexity to the

methodology. The method described here is quite general as it requires only the opti-

mized weights and biases from the network. The only current restriction on the method
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is that the neural network must have a single hidden layer. However, the methodology

described in this chapter can be extended to the case of multiple hidden layers though

the complexity of the treatment will correspondingly increase.

The interpretation method described in this work expands the role of CNN models

in the QSAR modeling field. The black box reputation of CNN models has led to their

main usage as predictive tools with no explanation of the structure-property trends that

are encoded within the model. We believe that this interpretation method will allow

for a detailed understanding of the structure-property trends encoded in CNN models

allowing them to be used for both predictive and design purposes.
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Table 9.1. Tabular representa-
tion of effective weights for a hy-
pothetical 4–3–1 CNN model. I1,
I2, I3 and I4 represent the four
input neurons (descriptors). wij

represents the weight for the con-
nection between the ith input neu-
ron and the jth hidden neuron.
wH

j
represents the weight between

the jth hidden neuron and the
output neuron. For this example
i ranges from 1 to 4 and j ranges
from 1 to 3

Hidden Neuron

1 2 3

I1 w11w
H
1

w12w
H
2

w13w
H
3

I2 w21w
H
1

w22w
H
2

w23w
H
3

I3 w31w
H
1

w32w
H
2

w33w
H
3

I4 w41w
H
1

w42w
H
2

w43w
H
3
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Table 9.2: A glossary of the descriptors used in this study

Descriptor code Meaning Reference

DPHS The difference between the hydrophobic and

hydrophilic surface area

24,26

FPSA-2 Charge weighted partial positive surface area divided

by the total surface area

33

MOLC-9 Balaban J topological index 34,35

MW Molecular weight

NDB Number of double bonds

NN Number of nitrogens

PNHS-3 Atomic constant weighted hydrophilic surface area 24,26

PPHS Total molecular hydrophobic surface area 24,26

SA Surface are of the molecule

S4PC-12 4th order simple path cluster molecular connectivity

index

36–38

V4P-5 4th order valence path molecular connectivity index 36–38

WNSA-3 Difference between the partial negative surface area

and the sum of the surface area on negative parts of

molecule multiplied by the total molecular surface

area

33

WPHS-3 Surface weighted hydrophobic surface area 24,26

WTPT-2 Molecular ID divided by the total number of atoms 39

RNHS Product of the surface area for the most negative

atom and the most hydrophilic atom constant

divided by the sum of the hydrophilic constants

24,26

RSHM Fraction of the total molecular surface area

associated with hydrogen bond acceptor groups

33
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Table 9.3. Summary of the linear regression
model developed for the DIPPR dataset

Estimate Std. Error t

(Intercept) −215.09 29.45 −7.30

PNSA-3 −3.56 0.21 −16.90

RSHM 608.07 21.30 28.55

V4P-5 19.57 3.30 5.92

S4PC-12 12.08 1.57 7.69

MW 0.57 0.061 9.42

WTPT-2 236.10 16.57 14.25

DPHS 0.19 0.02 7.07

Table 9.4. Summary of the PLS analysis based
on the linear regression model developed for the
DIPPR dataset

Components Error SS R2 PRESS Q2

1 94868.50 0.86 99647.60 0.85

2 26221.60 0.96 29046.70 0.95

3 16614.80 0.97 19303.30 0.97

4 14670.80 0.97 17027.60 0.97

5 14032.50 0.97 16281.30 0.97

6 13775.90 0.98 15870.60 0.97

7 13570.90 0.98 15653.00 0.97
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Table 9.5. The X-weights for the PLS components from the PLS
analysis summarized in Table 9.4

Component

Descriptor 1 2 3 4 5 6 7

PNSA-3 -0.30 -0.42 0.20 -0.25 0.25 -0.73 -0.12

RSHM 0.19 0.77 0.34 -0.03 0.22 -0.37 0.20

V4P-5 0.48 -0.15 -0.07 -0.66 -0.36 -0.09 0.38

S4PC-12 0.28 -0.07 -0.57 0.53 -0.03 -0.46 0.26

MW 0.49 -0.085 0.36 0.24 -0.39 -0.17 -0.60

WTPT-2 0.48 -0.05 -0.26 -0.22 0.70 0.13 -0.35

DPHS 0.26 -0.41 0.54 0.32 0.29 0.18 0.48

Table 9.6. Summary of the architectures and statistics for the CNN models devel-
oped for the datasets considered in this study. In all cases, the input descriptors
were the same as those used in the corresponding linear models

RMSE R2

Dataset Architecture TSET CVSET PSET TSET CVSET PSET

DIPPR 7–4–1 15.21 38.51 15.07 0.91 0.45 0.94

BBB 4–4–1 0.25 0.38 0.47 0.88 0.88 0.74

Skin 7–5–1 0.23 0.27 0.31 0.94 0.93 0.91



267

Table 9.7. The effective weight matrix
for the 7–4–1 CNN model developed for the
DIPPR dataset. The columns (hidden neu-
rons) are ordered by the the squared contri-
bution values (SCV) shown in the last row.
Note that the SRC value for the bias term is
not considered during the ranking

Hidden Neuron

1 3 2 4

PNSA-3 −1.80 −6.57 0.39 −1.43

RSHM 4.03 6.15 1.50 1.01

V4P-5 9.45 2.15 3.24 0.60

S4PC-12 3.36 2.73 1.99 0.56

MW-16 3.94 8.42 1.94 0.76

WTPT-2 1.71 2.61 1.17 −0.13

DPHS 0.66 0.44 0.33 1.65

SCV 0.52 0.33 0.13 0.01

Table 9.8. Summary of the linear regression
model developed for the BBB dataset

Estimate Std. Error t

(Intercept) 0.53 0.07 7.28

WNSA-3 0.04 0.01 6.24

V4P-5 0.24 0.03 7.13

NDB -0.13 0.03 -5.05

PNHS-3 0.03 0.00 6.93
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Table 9.9. Summary of the PLS analysis based on
the linear regression model developed for the BBB
dataset

Components Error SS R2 PRESS Q2

1 22.40 0.62 23.80 0.59

2 13.90 0.76 15.40 0.74

3 13.00 0.78 14.80 0.75

4 13.00 0.78 14.70 0.75

Table 9.10. The X-weights for the PLS
components from the PLS analysis summa-
rized in Table 9.9

Component

Descriptor 1 2 3 4

WNSA-3 0.54 -0.13 0.79 0.28

V4P-5 -0.09 0.97 0.17 0.12

NDB -0.57 -0.08 0.58 -0.58

PNHS-3 0.62 0.17 -0.12 -0.76
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Table 9.11. The effective weight matrix for the
4–4–1 CNN model developed for the BBB dataset.
The columns are ordered by the squared contribu-
tion values for the hidden neurons, shown in the
last row

Hidden Neuron

1 2 4 3

WNSA-3 52.41 29.30 −19.64 2.26

V4P-5 37.65 22.14 −3.51 −13.99

NDB −10.50 −16.85 −5.02 22.16

PNHS-3 11.46 6.59 −2.72 8.36

SCV 0.74 0.16 0.08 0.03

Table 9.12. Summary of the linear regres-
sion model developed for the skin permeability
dataset

Estimate Std. Error t

(Intercept) -5.47 0.24 -22.94

SA 0.00 0.00 6.92

FPSA-2 -2.38 0.17 -14.12

NN -0.28 0.05 -6.05

MOLC-9 0.50 0.07 7.19

PPHS 0.009 0.0007 13.47

WPHS-3 -0.02 0.00 -5.41

RNHS 0.05 0.00 7.48
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Table 9.13. Summary of the PLS analysis based
on the linear regression model developed for the
skin permeability dataset

Components Error SS R2 PRESS Q2

1 68.16 0.44 73.40 0.40

2 41.24 0.66 44.79 0.64

3 24.22 0.80 28.64 0.77

4 19.79 0.84 23.21 0.81

5 19.40 0.84 22.21 0.82

6 19.39 0.84 22.23 0.82

7 19.39 0.84 22.20 0.82

Table 9.14. The X-weights for the PLS components from the PLS anal-
ysis summarized in Table 9.13

Descriptor 1 2 3 4 5 6 7

SA −0.08 0.52 0.20 −0.31 −0.29 −0.71 −0.07

FPSA-2 −0.52 0.14 −0.48 −0.38 −0.16 0.20 0.52

NN −0.36 −0.03 0.07 0.45 −0.74 0.18 −0.27

MOLC-9 0.61 0.11 −0.32 0.36 −0.33 −0.16 0.50

PPHS 0.03 0.69 0.45 0.17 0.13 0.48 0.23

WPHS-3 0.09 0.48 −0.65 0.10 0.16 0.10 −0.55

RNHS 0.46 −0.04 0.07 −0.63 −0.42 0.41 −0.21
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Table 9.15. The effective weight matrix for the 7–5–1 CNN
model developed for the skin permeability dataset. The
columns are ordered by the squared contribution values for
the hidden neurons, shown in the last row

Hidden Neuron

5 2 4 3 1

SA −44.17 67.34 8.33 8.18 5.96

FPSA-2 −156.82 −10.72 20.85 −13.07 −92.47

NN −97.81 2.22 −6.65 1.71 −12.70

MOLC-9 −28.85 17.79 15.40 −11.36 −1.20

PPHS 106.55 31.30 −16.76 −13.99 34.55

WPHS-3 −11.36 −14.31 −2.31 −10.01 54.16

RNHS 20.16 −5.89 −49.57 23.88 27.09

SCV 0.85 0.13 0.02 0.01 0.00
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High Permeability Low Permeability

3 (-1.23) 121 (-1.38)

18 (-1.44) 54 (-4.13)

43 (-0.85) 129 (-4.30)

Fig. 9.1. A comparison of compounds exhibiting high and low skin perme-
ability to illustrate the SPR encoded by component 1. The bold number is
the serial number and the measured permeability coefficient is displayed in
parentheses.
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High Permeability Low Permeability

82 (-2.25) 101 (-3.75)

130 (-2.26) 77 (-4.01)

Fig. 9.2. A comparison of compounds with high and low skin perme-
ability, predicted by the second PLS component. The bold number is
the serial number and the measured permeability coefficient is displayed
in parentheses.
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Moderate Permeability Low Permeability

21 (-1.10) 42 (-3.95)

43 (-0.85) 46 (-3.72)

75 (-1.15) 135 (-3.83)

Fig. 9.3. A comparison of structures illustrating compounds
with high and low skin permeability, predicted by the 5th

hidden neuron. The bold number is the serial number and the
number in brackets is the measured permeability coefficient
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Moderate Permeability Low Permeability

78 (-1.52) 69 (-4.40)

81 (-2.44) 72 (-4.02)

114 (-1.96) 77 (-4.07)

Fig. 9.4. A comparison of structures illustrating compounds with
moderate and low skin permeability predicted by the 2nd hidden
neuron. The bold number is the serial number and the number in
brackets is the measured permeability coefficient
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Fig. 9.5. The score plot for the 5th hidden neuron. Points marked in red are examples of
mispredicted molecules. Points colored blue are examples of well predicted molecules.
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Fig. 9.6. The score plot for the 2nd hidden neuron.Points marked in red are examples of
mispredicted molecules. Points colored blue are examples of well predicted molecules.
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Fig. 9.7. The score plot for the 4th hidden neuron. Points marked in red are examples of
mispredicted molecules.
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