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Chapter 8

Interpreting Computational Neural Network QSAR

Models: A Measure of Descriptor Importance

8.1 Introduction

Computational neural networks (CNNs) are an important component of the QSAR

practitioner’s toolbox for a number of reasons. First, neural network models are gener-

ally more accurate than other classes of models. The higher predictive ability of CNNs

arises from their flexibility and their ability to model nonlinear relationships. Second, a

variety of neural networks are available depending on the nature of the problem being

studied. One can consider classes of neural networks depending on whether they are

trained in a supervised manner (e.g., back-propagation networks) or in an unsupervised

manner (e.g., Kohonen map1).

Neural network models also have a number of shortcomings. First, neural network

models can be over-trained. Thus, it is frequently the case that a neural network model

will have memorized the idiosyncrasies of the training set, essentially fitting the noise.

As a result, when faced with a test set of new observations, such a model’s predictive

ability will be very poor. One way to alleviate this problem is the use of cross-validation

and use of root mean square errors (RMSE) for characterizing the preformance of the

CNN with the training, cross-validation, and prediction set’s as described in Chapter

2. A second drawback is the matter of interpretability. Neural networks are generally

regarded as black boxes. That is, one provides the input values and obtains an output

value, but generally no information is provided regarding how those output values were

obtained or how the input values correlate to the output value. In the case of QSAR

models, the lack of interpretability forces the use of CNN models as purely predictive

tools rather than as an aid in the understanding of structure property trends. As a

result, neural network models are very useful as a component of a screening process.

But the possibility of using these models in computationally guided structure design is

This work was published as Guha, R.; Jurs, P.C., “Interpreting Computational Neural Network
QSAR Models: A Measure of Descriptor Importance”, J. Chem. Inf. Model., 2005, 45, 800–806.



218

low. This is in contrast to linear models, which can be interpreted in a simple manner

as has been shown in Chapters 6 and 7.

A number of reports in the machine learning literature describe attempts to ex-

tract meaning from neural network models.2–7 Many of these techniques attempt to

capture the functional representation being modeled by the neural network. In a num-

ber of cases, these methods require the use of specific neural network algorithms8,9 and

so generalization can be difficult.

Interpretation can be considered in two forms, broad and detailed. The aim of

a broad interpretation is to characterize how important an input neuron (or descriptor)

is to the predictive ability of the model. This type of interpretation allows us to rank

input descriptors in order of importance. However, in the case of a QSAR neural net-

work model, this approach does not allow us to understand exactly how a specific input

descriptor affects the network output (for a QSAR model, predicted activity or prop-

erty). The goal of a detailed interpretation is to extract the structure-property trends

from a CNN model. A detailed interpretation should be able to indicate how an input

descriptor for a given input example correlates to the predicted value for that input.

This chapter focuses on a method to provide a broad interpretation of a neural network

model. A technique to provide a detailed interpretation is described in the next chapter.

8.2 Methodology

In this study we restrict ourselves to the use of 3-layer, fully-connected, feed-

forward computational neural networks. Furthermore, we consider only regression net-

works (as opposed to classification networks). The input layer represents the input

descriptors, and the value of the output layer is the predicted property or activity.

The neural network models considered in this work were built using the ADAPT10,11

methodology which uses a genetic algorithm12,13 to search a descriptor pool to find the

best subset (of a specified size) of descriptors that results in a CNN model having a

minimal cost function. This methodology has been discussed in detail in Chapters 2 and

3. The broad interpretation is essentially a sensitivity analysis of the neural network.

This form of analysis has been described by So and Karplus.14 However, the results of

a sensitivity analysis have not been viewed as a measure of descriptor importance. It

should also be pointed out that the idea behind sensitivity analysis is also the method

by which a measure of descriptor importance is generated for random forest models.15,16
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The algorithm we have developed to measure descriptor importance proceeds in

a number of steps. To start, a neural network model is trained and validated. The

RMSE for this model is denoted as the base RMSE. Next, the first input descriptor is

randomly scrambled, and then the neural network model is used to predict the activity of

the observations. Because the values of this descriptor have been scrambled, one would

expect the correlation between descriptor values and activity values to be obscured. As

a result, the RMSE for these new predictions should be larger than the base RMSE. The

difference between this RMSE value and the base RMSE indicates the importance of the

descriptor to the model’s predictive ability. That is, if a descriptor plays a major role

in the model’s predictive ability, scrambling that descriptor will lead to a greater loss

of predictive ability (as measured by the RMSE value) than for a descriptor that does

not play such an important role in the model. This procedure is then repeated for all

the descriptors present in the model. Finally, we can rank the descriptors in order of

importance.

An alternative procedure was also investigated; it consisted of replacing individual

descriptors with random vectors. The elements of the random vectors were chosen from

a normal distribution with mean and variance equal to that of the original descriptor.

The RMSE values of the model with each descriptor replaced in turn by its random coun-

terpart was recorded as described above. We did not notice any significant differences

in the final ordering of the descriptors compared to the random scrambling experiments.

In all cases the most important descriptor was the same. In two of the datasets the only

difference occurred in the ordering of two or three of the least significant descriptors.

8.3 Datasets and Models

To test this measure of descriptor importance we considered a number of datasets

that have been studied in the literature. In two cases, linear regression models had been

built and interpreted using the PLS scheme described by Stanton.17 In all cases neural

network models were also reported, but no form of interpretation was provided for these

models, as they were developed primarily for their superior predictive ability.

We applied the descriptor importance methodology to these neural network mod-

els and compared the resultant rankings of the descriptors to the importance of the

descriptors described by the PLS method for the linear models. It is important to note

that the linear and CNN models do not necessarily contain the same descriptors (and

indeed may have none in common). However, since both types of models should capture
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similar structure-property relationships present in the data, it is reasonable to expect

that the descriptors used in the models should have similar interpretations. Due to the

broad nature of the descriptor importance methodology, we do not expect a one-to-one

correlation of interpretations of the linear and nonlinear models. However, the correla-

tion does allow us to see which descriptors in a CNN model are playing the major role

and by comparison with the interpretations provided for the linear models allows us to

confirm that this method is able to capture descriptor importance correctly.

We considered three datasets. The first dataset consisted of a 147-member subset

of compounds whose measured activity was normal boiling point. The whole dataset con-

tained 277 compounds, obtained from the Design Institute for Physical Property Data

(DIPPR) Project 801 database, and it was studied by Goll and Jurs.18 Although the

original work reported linear as well as CNN regression models we generated new linear

and nonlinear models using the ADAPT methodology19,20 and provide a brief interpre-

tation for the linear case, using the PLS technique,17 focusing on which descriptors are

deemed important. The second dataset consisted of 179 artemisinin analogs. These were

studied using CoMFA21 by Avery et al.22 The measured activity was the logarithm of the

relative activity of the analogs (compared to the activity of artemisinin). This dataset

has been discussed in Chapter 6 where it was used to build linear and nonlinear models

using a 2-D QSAR methodology. An interpretation of the linear model using the PLS

technique was also presented. The third dataset consisted of a set of 79 PDGFR phos-

phorylation inhibitors described by Pandey et al.23 The reported activity was log(IC50)

and was obtained from a phosphorylation assay. A set of linear and nonlinear models

were developed using this dataset and are described in Chapter 7, where we also provide

an interpretation of the linear model.

8.4 Results

8.4.1 DIPPR Dataset

We first consider the linear and CNN models for the DIPPR dataset for modeling

boiling points. The statistics of the linear regression model for this dataset are summa-

rized in Table 8.1 and the meanings of the descriptors used in the model are summarized

in Table 8.2. The R2 value was 0.98, and the F -statistic was 1001 (for 7 and 139 degrees

of freedom) which is much greater than the critical value of 2.076 (α = 0.05). The model

is thus statistically valid. The corresponding PLS analysis is summarized in Table 8.3.
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The PLS statistics indicate that the increase in Q2 beyond the fourth component is neg-

ligible. Thus, we need only consider the most important descriptors in the first three

components. To see which descriptor is contributing the most in a given component, we

consider the X weights obtained from the PLS analysis which are displayed in Table 8.4.

In component 1 it is clear that MW and V4P-5 are the most heavily weighted descrip-

tors. Higher values of molecular weight correspond to larger molecules and thus elevated

boiling points. The V4P-5 descriptor characterizes branching in the molecular structure,

and higher values indicate a higher degree of branching. Thus, both of the most impor-

tant descriptors in the first component correlate molecular size to higher values of boiling

point. In the second component we see that the most weighted descriptors are RSHM

and PNSA-3. RSHM characterizes the fraction of the solvent accessible surface area

associated with hydrogens that can be donated in a hydrogen-bonding intermolecular

interaction. PNSA-3 is the charge weighted partial negative surface area. Clearly, both

these descriptors characterize the ability of molecules to form hydrogen bonds. In sum-

mary, the structure-property relationship captured by the linear model indicates that

London forces dominate the relationship. Although individual atomic contributions to

the trend are small, larger molecules will have more interactions leading to higher boiling

points. In addition, attractive forces, originating from hydrogen bond formation, also

play a role in the relationship and these are characterized in the second component of the

PLS model. We can use the above discussion and information from the PLS analysis to

rank the descriptors considered in the PLS analysis in decreasing order of contributions:

MW, V4P-5, RSHM, PNSA-3.

The next step was to develop a computational neural network model for this

dataset. The ADAPT methodology was used to search for descriptor subsets ranging in

size from 4 to 6. The final CNN model had a 5–3–1 architecture, and the statistics of the

model are reported in Table 8.5. The descriptors in this model were FNSA-3, MOLC-6,

WPHS-3 and RPHS, which are described in Table 8.2. The increase in RMSE values for

the descriptors in each neural network model are reported in Tables 8.6, 8.7 and 8.8. In

each table the third column represents the increase in RMSE, due to the scrambling of

the corresponding descriptor, over the base RMSE. It is evident that scrambling some

descriptors leads to larger increases, whereas others lead to negligible increases in the

RMSE. The information contained in these tables is more easily seen in the descriptor

importance plots shown in Figs. 8.1, 8.2 and 8.3. These figures plot the increase in

RMSE for each descriptor, in decreasing order.
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Considering the DIPPR dataset (Table 8.6 and Fig. 8.1) we see that although the

linear and nonlinear models have only one descriptor in common (RSHM) the types of

descriptors are the same in the both models (topological and charge-related). The CNN

model contains charged partial surface area descriptors (RSHM and FNSA-3) as well as

hydrophobicity descriptors (WPHS-3 and RPHS). One may expect that the structure-

activity trends captured by the CNN model are similar to those captured by the linear

model. If we look at Fig. 8.1 we see that the most important descriptor is WPHS-3.

This descriptor represents the surface weighted hydrophobic surface area. Since this

is correlated to the positively charged surface area, this descriptor should characterize

hydrogen-bonding ability. The second most important descriptor is MOLC-6, which

represents a topological path containing four carbon atoms. This descriptor essentially

characterizes molecular size. The next two most important descriptors are RSHM, which

has been previously described, and RPHS, which characterizes the relative hydrophobic

surface area. The insignificant separation between these two descriptors along the X-axis

indicates that these two descriptors are probably playing similar roles in the predictive

ability of the CNN model. When compared to the ranking of descriptor contributions

in the PLS analysis we see that the CNN descriptor importance places a hydrophobicity

descriptor as the most important descriptor, followed by MOLC-6 which, as mentioned,

characterizes molecular size. The difference in ordering may be due to the fact that

the CNN is able to find a better correlation between the selected descriptors, such that

WPHS-3 provides the maximum amount of information. However, in general, the broad

interpretation provided by this method does compare well with that of the linear model

using PLS.

8.4.2 PDFGR Dataset

We now consider the PDGFR dataset. Chapter 7 described a 3-descriptor linear

regression model. The PLS interpretation of this model indicated that all three descrip-

tors were important. These descriptors were SURR-5, RNHS-3 and MDEN-23. The

first two descriptors are hydrophobic surface area descriptors and the last descriptor is

a topological descriptor which represents the geometric mean of the topological path

length between secondary and tertiary nitrogens. If we take into account the PLS com-

ponents in which these descriptors occur, they can be ordered as SURR-5, MDEN-23 and

RNHS-3 (decreasing importance). The CNN model for this dataset, described in Chap-

ter 7, contained 7 descriptors: N5CH, WTPT-3, WTPT4, FLEX-4, RNHS-3, SURR-5
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and APAVG. A summary of these descriptors can be found in Table 8.2 As can be seen,

the linear regression and CNN models have two descriptors in common: SURR-5 and

RNHS-3.

The descriptor importance plot for the PDFGR dataset (Fig. 8.2) shows the most

important descriptor to be SURR-5. The next most important descriptor is RNHS-3.

The position of RNHS-3 on the plot indicates that it plays a much less important role

than SURR-5 in the model’s predictive ability. However, it is notable that the two

most important descriptors identified by our method in the CNN model are also the

two most important descriptors identified by the PLS analysis of the linear regression

model. Given that the CNN model and linear model should capture similar structure

property trends in the dataset, the similarity between the important descriptors in the

two models serve to confirm the validity of this method. It is also interesting to note

that FLEX-4, N5CH-12 and WTPT-3 descriptors are relatively closely spaced along the

X-axis. Though these descriptors are ranked, the relatively small increase between each

one might be indicative that these descriptors are performing similar roles within the

network. The position of WTPT-5 in the plot indicates that it contributes relatively

little to the model’s predictive ability.

8.4.3 Artemisinin Dataset

Finally, we consider the artemisinin dataset. Chapter 6 presented a 4-descriptor

linear regression model. The most important descriptors identified by a PLS analysis

of this model were N7CH, WTPT-2 and NSB. N7CH and WTPT-2 are topological

descriptors. N7CH is the number of seventh order chains and WTPT-2 is the weighted

path descriptor divided by the total number of atoms. NSB is the count of single bonds.

Summaries of the descriptors are presented in Table 8.2 and further details of these

descriptors can be found in the original work.24 Taking into account the PLS components

in which these appear, we can order them as: N7CH, NSB, WTPT-2 (decreasing order

of importance). The CNN model described in Chapter 6 had 10 descriptors: KAPPA-6,

NDB, MOMI-4, N7CH, MOLC-8, WTPT-5, MDE-12, MDE-13, ELEC and FPSA-3.

Brief summaries of the descriptors can be found in Table 8.2. In this case, the linear

model and the CNN model have only one descriptor in common (N7CH), though both

models contain weighted path descriptors (WTPT-2 for the linear model and WTPT-

5 for the CNN model). The CNN model also contains a number of topological and

geometric descriptors (KAPPA-6, MOLC-8, MDE-12, MDE-13 and MOMI-4) as well as
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two electronic descriptors (ELEC and FPSA-3). When compared to the linear model,

which contained only topological descriptors, it appears that the CNN model has been

able to capture a more detailed view of the structure-property relationship by including

information from electronic descriptors.

If we now consider the descriptor importance plot in Fig. 8.3 we see that the

most important descriptor is N7CH. Its contribution to the model’s predictive ability is

clearly significant. In contrast, the next most significant descriptor, MDE-13, is much

further left than N7CH. MDE13 is a distance edge descriptor (the number of paths

between primary and tertiary carbons) and characterizes molecular size. In this sense, it

is similar in nature to the count of single bonds (the second most important descriptor

in the linear model). Once again we see that a number of descriptors are relatively

closely spaced along the X- axis (such as NDB, MOLC-8, FPSA-3 and KAPA-6). It

is interesting to note that the electronic descriptors are approximately in the middle

of the ranking, whereas the top four descriptors are mainly topological in nature. One

can conclude that electronic factors do not play a major role in the structure property

relationship captured by this CNN model, but do enhance the predictive ability of the

model when compared to the performance of the linear model. It is also interesting to

see that the WTPT-5 is ranked quite low in the CNN model and is the least important

descriptor in the linear model. As before, if we assume that the linear and nonlinear

models capture similar structure-property relationships we see that the CNN descriptor

importance method ranks the descriptors such that their order of importance is similar

to that in the linear model.

8.5 Conclusions

From the preceding results, we see that the proposed measure of importance is

able to characterize the relative importance of descriptors. The resultant ranking of

descriptors corresponds well to a ranking of descriptors obtained by PLS analysis of a

linear model using the same dataset. The comparison with the linear models is not

necessarily one-to- one since the descriptors in the linear and CNN models will generally

be different.

The representation of descriptor importance plots allows easy visual analysis of

the descriptors in the model. In addition, apart from merely ranking, the plots provide

a qualitative view of how important a given descriptor is relative to others. That is,

by looking at the separation between two descriptors on the X-axis, one may determine
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that a certain descriptor plays a much more significant role than another in the model’s

predictive power. We conjecture that descriptors with little separation along the X-axis

play similar roles within the CNN architecture. However, confirmation of this requires

a more detailed interpretation of the CNN model, which we present in the next chapter.

It is clear that the proposed measure of descriptor importance does not allow

the user to elucidate exactly how the model represents the information captured by a

given descriptor. That is, the methodology does not indicate the sign (or direction)

of the effect of each input descriptor. Thus we cannot draw conclusions regarding the

nature of the correlation between input descriptors and network output. However, even

in the absence of a detailed understanding of the behavior of the input descriptors,

the method described here allows the user to determine the most important descriptor

(or descriptors) and investigate whether replacement by similar descriptors might lead

to an improvement in the model’s predictive ability. We investigated this possibility

by replacing the SURR-5 descriptor from the 10–5–1 CNN model for the artemisinin

dataset by other hydrophobic surface area descriptors. In some cases the RMSE of

the resultant model did increase, though not significantly. However in a few cases the

RMSE of the model decreased, compared to the original RMSE. This is not surprising,

as the importance plots show that theoretically related descriptors (such as WTPT-3

and WTPT-5 in Fig. 8.2) may have significantly different contributions. However, the

importance measure does allow us to change model descriptors in a guided manner. This

procedure is functionally similar to feature selection but the main difference is that it is

applied to a subset of descriptors that have already been deemed “good” by a feature

selection algorithm (genetic algorithm12 or simulated annealing25). Hence, the result of

the “tweaking” procedure described here, is akin to locally fine-tuning a given descriptor

subset, rather than selecting whole new subsets.

Finally, we note that the machine learning literature describes a number of ap-

proaches to interpretation of CNN models. In general, these methods are closely tied to

specific types of neural network models.8,9 A useful feature of this interpretation method-

ology is that it is quite general in nature. That is, the methodology is not dependent on

the specific characteristics of a neural network and depends only on the input data. This

implies that the methodology can be applied to obtain descriptor importance measures

for any type of neural network model such as single layer or multilayer perceptrons26

or radial basis networks.27 Furthermore many interpretation methods are focused on

extracting rules or analytical forms of the CNN’s internal model.28–30 In many cases,

this necessitates a complex analysis of the model utilizing another pattern recognition31
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or optimization algorithm.28,32 In contrast, the method described here is simple to carry

out and provides easily understandable conclusions. In summary, the interpretation

methodology described here provides a broad view of descriptor importance for a neural

network model, thus alleviating the black box nature of the neural network methodology

to some extent.
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Table 8.1. Summary of the linear regression model de-
veloped for the DIPPR dataset.

Estimate Std. Error t P

(Intercept) −215.092 29.451 −7.30 0.000

PNSA-3 −3.561 0.210 −16.90 0.000

RSHM 608.071 21.302 28.55 0.000

V4P-5 19.576 3.308 5.92 0.000

S4PC-12 12.089 1.572 7.69 0.000

MW 0.579 0.061 9.42 0.000

WTPT-2 236.108 16.574 14.25 0.000

DPHS 0.198 0.028 7.07 0.000

Table 8.2: Glossary of descriptors reported in this paper

Descriptor Code Description Reference

APAVG The mean value of all unique atom pairs present in

the molecule

33

DPHS The difference between the hydrophobic and

hydrophilic surface area

34

ELEC Electronegativity (0.5× (HOMO + LUMO))

FLEX-4 Molecular mass of rotatable atoms divided by the

hydrogen suppressed molecular weight

35

FNSA-3 Charge weighted partial negative relative surface area 36

FPSA-3 Atom weighted partial positive surface area divided

by the total molecular surface area

36

KAPA-6 Atom corrected shape index (3κ) 37–39

MDE-12 Molecular distance edge vector between primary and

secondary carbons

40

MDE-13 Molecular distance edge vector between primary and

tertiary carbons

40
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Table 8.2: (continued)

Descriptor Code Description Reference

MDEN-23 Molecular distance edge vector between secondary

and tertiary nitrogen’s

40

MOLC-6 Path of length 4 molecular connectivity index 41,42

MOLC-8 Path-cluster of length 4 molecular connectivity index 41,42

MOMI-4 Ratio of the principal component of the moment of

inertia along the X-axis to that along the Y-axis

43

MW Molecular weight

NDB Number of double bonds

NSB Number of single bonds

N5CH-12 Number of 5th order chains 44–46

N7CH Number of 7th order chains 44–46

PNSA-3 Charge weighted partial negative surface area 36

RNHS-3 A hydrophobic surface area descriptor defined as the

product of the surface area of the most hydrophilic

atom and the sum of the hydrophilic constants

divided by the logP value for the molecule

34,47

RPHS Product of the surface area of the most hydrophobic

atom and its hydrophobic constant divided by the

sum of all hydrophobic constants

34,47

RSHM Fraction of the solvent accessible surface area

associated with hydrogens that can be donated in a

hydrogen-bonding intermolecular interaction

36

S4PC-12 4th order simple path cluster 44–46

SURR-5 Ratio of the atomic constant weighted hydrophobic

(low) surface area and the atomic constant weighted

hydrophilic surface area

34,47

V4P-5 4th order valence path molecular connectivity index 44–46

WPHS-3 Surface weighted hydrophobic surface area 34,47

WTPT-3 Sum of all path lengths starting from heteroatoms 48

WTPT-5 Sum of all path lengths starting from nitrogen’s 48
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Table 8.3. Summary of the PLS analysis based on the linear
regression model developed for the DIPPR dataset.

Components X Variance Error SS R2 PRESS Q2

1 0.431 94868.5 0.863 99647.6 0.857

2 0.660 26221.6 0.962 29046.7 0.958

3 0.768 16614.8 0.976 19303.3 0.972

4 0.843 14670.8 0.978 17027.6 0.975

5 0.911 14032.5 0.979 16281.3 0.976

6 0.987 13775.9 0.980 15870.6 0.977

7 1.000 13570.9 0.980 15653.0 0.977

Table 8.4. The X weights for the PLS components from the PLS analysis
summarized in Table 8.3.

Component

Descriptor 1 2 3 4 5 6 7

PNSA-3 -0.303 -0.423 0.202 -0.250 0.254 -0.737 -0.127

RSHM 0.190 0.779 0.347 -0.032 0.222 -0.377 0.209

V4P-5 0.485 -0.157 -0.071 -0.664 -0.368 -0.096 0.384

S4PC-12 0.289 -0.079 -0.578 0.531 -0.031 -0.469 0.264

MW 0.499 -0.085 0.368 0.242 -0.397 -0.170 -0.602

WTPT-2 0.483 -0.051 -0.265 -0.221 0.708 0.138 -0.350

DPHS 0.263 -0.415 0.540 0.322 0.297 0.187 0.487
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Table 8.5. Summary
statistics for the best CNN
model for the DIPPR
dataset. The model
architecture was 5–3–1.

R2 RMSE

TSET 0.98 9.92

CVSET 0.99 7.89

PSET 0.98 8.61

Table 8.6. Increase in RMSE due to scrambling of
individual descriptors. The CNN architecture was
5–3–1 and as built using the DIPPR dataset. The
base RMSE was 9.92

Scrambled Descriptor RMSE Difference

1 FNSA-3 30.50 20.58

2 RSHM 35.76 25.84

3 MOLC-6 51.32 41.39

4 WPHS-3 66.27 56.35

5 RPHS 35.75 25.83
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Table 8.7. Increase in RMSE due to scrambling of
individual descriptors. The CNN architecture was
7–3–1 and was built using the PDGFR dataset.
The base RMSE was 0.29

Scrambled Descriptor RMSE Difference

1 N5CH-12 0.50 0.20

2 WTPT-3 0.49 0.19

3 WTPT-5 0.39 0.09

4 FLEX-4 0.51 0.21

5 RNHS-3 0.51 0.21

6 SURR-5 0.72 0.42

7 APAVG 0.48 0.18
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Table 8.8. Increase in RMSE due to scrambling of
individual descriptors. The CNN architecture was
10–5–1 and was built using the artemisinin dataset.
The RMSE for the original model was 0.48

Scrambled Descriptor RMSE Difference

1 KAPA-6 0.88 0.40

2 N7CH-20 1.97 1.49

3 MOLC-8 0.98 0.50

4 NDB 0.99 0.51

5 WTPT-5 0.78 0.30

6 MDE-12 0.85 0.37

7 MDE-13 1.18 0.70

8 MOMI-4 0.77 0.29

9 ELEC 0.93 0.45

10 FPSA-3 0.89 0.41
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Fig. 8.1. Importance Plot for the 5–3–1 CNN model built using the
DIPPR dataset
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Fig. 8.2. Importance Plot for the 7–3–1 CNN model built using the
PDGFR dataset
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Fig. 8.3. Importance Plot for the 10–5–1 CNN model built using the
artemisinin dataset
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