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Chapter 7

The Development of Linear, Ensemble and Nonlinear

Models for the Prediction and Interpretation of the

Biological Activity of a Set of PDGFR Inhibitors

7.1 Introduction

The investigation of anti-cancer drugs has focussed on a number of targets. One

of the initial focus areas was compounds that could interfere in DNA synthesis and

function and as a result, stimulate apoptotic pathways. Such a self-destructive approach

is limited in terms of efficiacy and selectivity. An alternative approach that has been

the target of intense research is the development of compounds that are able to interfere

with cellular signal transduction mechanisms. Cell growth is one area in which signal

transduction plays a vital role. Essentially, growth factors bind to specific cell surface

receptors initiating a cascade of events which lead to activation of genes or other growth

mechanisms. An important class of growth receptors are the receptor tyrosine kinases

(RTK’s). This class of kinase is a member of a family known as protein tyrosine kinases

which transmit growth signals via a phosphorylation mechansim.1 The structures of

RTK’s consist of three parts - a ligand binding region on the cell membrane, a region

spanning the cell membrane and tyrosine kinase domains within the cell.2–4 Four main

RTK’s are known, and platelet derived growth factor receptor (PDGFR) is the RTK

that is considered in this chapter.

A large number of compounds have been investigated as putative PDGFR in-

hibitors. Examples include 1–phenylbenzimidazoles,5 arylquinoxalines,6 piperazinylquina-

zolines3 and various pyrimidine analogs.7–9 The mode of action of PDGFR inhibitors is

competition with ATP binding at the intra-cellular kinase domains. Thus, the biological

activity of prospective inhibitors can be investigated with phosphorylation assays. Much

experimental work has been carried out on this family of proteins and a number of QSAR

This work was published as Guha, R.; Jurs, P.C., “The Development of Linear, Ensemble and
Non-linear Models for the Prediction and Interpretation of the Biological Activity of a Set of
PDGFR Inhibitors”, J. Chem. Inf. Comput. Sci., 2004, 44, 2179–2189.



184

studies have been carried out as well. Kurup et al.1 conducted an extensive review of

QSAR models for tyrosine kinase inhibitors (including PDGFR). All the models reported

were linear in nature and were developed using a limited number of descriptors. Shen et

al.10 developed a series of linear regression models for the set of 1- phenylbenzimidazoles

described by Palmer5 using electronic descriptors and a PLS routine to build the final

models.

This study involves the development of a set of linear as well as nonlinear models

to predict and interpret the biological activity of a set of piperazinylquinazolines investi-

gated by Pandey et al.3 The dataset consisted of 79 compounds with the biological activ-

ity reported as IC50 values. Activity values were obtained from a phosphorylation assay

with and without human plasma. The original study investigated the structure-activity

trend of these compounds experimentally, but no computational models were developed.

We note that Khadikar et al11 have reported a QSAR study using this dataset. How-

ever, their study was restricted to linear regression models using topological descriptors

only. Furthermore, they restricted themselves to using IC50 values from the assay in the

absence of human plasma. The models we present concentrate on the biological activity

values obtained from the assay in the presence of human plasma. Furthermore we present

results from linear regression models as well as nonlinear computational neural network

models. We used a wide variety of descriptors rather than restricting ourselves to any

single class. Finally, in addition to prediction, the linear model was analysed using the

PLS interpretation method to explain the structure-activity trends embodied in it.

7.2 Dataset

The dataset consisted of 79 compounds that were derivatives of 4–piperazinylquin-

azolines and were investigated for their ability to inhibit PDGFR phosphorylation.3 The

structures of these compounds have been presented by Pandey et al.3 The compounds

were evaluated for their inhibition of PDGFR phosphorylation in MG63 cells.3,12 The

assays were carried out both in the presence and absence of human plasma resulting

in two sets of IC50 values. For the purposes of this study, these were converted to

− log(IC50) values. However a number of the measurements made in the absence of

plasma were reported as < 0.004. Since this indicates that the response was possibly

below the limit of detection, these compounds would have to be ignored for the purposes

of model building, thus decreasing the size of the dataset. Hence we only considered the
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set of measurements made in the presence of human plasma thus allowing the use of all

79 compounds.

7.3 Methodology

This study used the ADAPT13,14 package to calculate descriptors and develop

QSAR models. As described previously, the ADAPT methodology allows for the devel-

opment of linear models and nonlinear models. In addition a random forest15 model was

built using the R software package.16 A brief overview of the aspects of the methodology

specific to this study are dicussed below and further details are presented in Chapter 3.

The first step was to divide the compounds into the three sets - the training, cross-

validation and prediction set (known as QSAR sets) using an activity binning method.

This resulted in a training set containing 57 compounds, a cross-validation set containing

9 compounds and a prediction set containing 13 compounds. Next, the 3-D molecular

structures were entered using Hyperchem17 and geometry optimized using MOPAC 7.01

with the PM3 Hamiltonian. After structures were optimized molecular descriptors were

calculated resulting in a total of 321 descriptors. This descriptor pool was reduced using

objective feature selection. Setting correlation and identical cutoffs of 0.75 and 0.75,

respectively, this procedure resulted in a reduced pool of 41 descriptors. This descriptor

pool was used to generate the linear and nonlinear models discussed in this chapter.

The next stage was subjective feature selection in which a simulated annealing

algorithm18 or a genetic algorithm19,20 was employed to search for optimal descriptor

subsets to build linear and nonlinear models. For both types of models a number of can-

didate models were generated. In the case of the linear regression model, the final model

selected was the one that had the lowest RMS error. In the case of the CNN models,

the set of models for descriptor subsets of a given size were analyzed more rigorously to

determine the optimal architecture. The final descriptor subset and architecture selected

was the one that had the lowest value of the cost function described in Section 3.4.2.

The random forest technique has been discussed in detail in Section 2.3.1. In

this study we did not deviate significantly from the default settings of the random forest

implementation in the R software package. We focused on the number of descriptors

randomly selected to split nodes on, and the minimum node size (that is, the minimum

number of members in a node, below which a node is not split). In general the defaults in

the R implementation of the random forest algorithm lead to good models. However, we
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performed a grid search to find optimal values of the parameters using the tune function

from the e1071 package in R.

7.4 Results

7.4.1 Linear Models

A series of linear models were developed using the genetic algorithm to search for

optimal descriptor subsets. A training set of 68 compounds was used initially. The best

model obtained was a 9-descriptor model. However, it exhibited poor regression statistics

(no t-values were greater than 3.0 and p-values for the coefficients were on the order of

0.01). Furthermore, none of the models except the 9-descriptor model were validated

when investigated using a PLS analysis. A 3-descriptor model with similar statistics but

a much lower R2 and RMSE was also investigated. One aspect of these two models, as

well as nearly all the models developed using the GA, was that three compounds (23,

83 and 90) were consistently flagged as training set outliers. Outliers were detected by

plotting studentized residuals versus the compound index for each of the linear models

developed. An example of the residual plot for the 3-descriptor model is shown in Figure

7.1. Apart from the compounds mentioned above, some models usually had one or two

other compounds which could be considered as borderline outliers. Since these borderline

compounds varied from model to model, we did not consider them further. Since the

three outliers mentioned above were found in nearly all the models that were generated,

we felt it was justified to remove them from the training pool and to reexamine the

models. Thus, the training set was reduced to 65 compounds. One common feature of

these compounds that may justify their removal is that the 6 position on the quinazoline

ring in these compounds has an ethoxy group (in the case of 83 and 90) or a hydrogen

(in the case of 23), whereas the majority of compounds have longer (bulkier) functional

groups at this position. Furthermore in the case of 83 and 90, the 7 position does have

a ring moiety at the end of the 4-membered chain and thus can be considered relatively

bulky. However as will be discussed later, such a feature (bulky groups attached to long

chains at the 6 and 7 positions on the quinazoline moiety) is characteristic of compounds

with high activity whereas these compounds have quite low values of activity. This

observation is supported to some extent by the fact that in Figure 7.1, compounds

83 and 90 are significantly more outlying than 23. The statistics of all the models

improved and most models were validated using the PLS technique (including the 9-

and 3-descriptor models mentioned previously). Since the aim of a modeling technique
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is parsimony, we chose to present the results, and an interpretation of, the 3-descriptor

model.

A plot of the observed versus predicted − log(IC50) values for the 3-descriptor

model (with training set outliers removed) is shown in Figure 7.2. The statistics of the

model are summarized in Tables 7.1 and 7.2. The ranges of the descriptors used are

shown in Table 7.3. The R2 for the model was 0.65 and the RMSE was 0.38. The value

of the F -statistic was 37.06 (on 3 and 59 degrees of freedom) compared to a critical

value of 2.76 (at the 0.05 significance level) with a p-value of 1.4 × 10−13. Finally the

variance inflation factors for all the descriptors was less than 1.6 indicating the absence

of collinearities in the model. For the prediction set the R2 was 0.38 and the RMSE

was 0.47. Though the RMSE is not significantly higher than for the training set, the

low value of R2 is influenced by the prediction set outlier noted in Figure 7.2. Removal

of this compound (55) from the prediction set resulted in a R2 of 0.84 and RMSE of

0.24. The structure of this outlier is shown in Figure 7.3. A simple comparison of the

structure of this outlier with other structures in the dataset does not reveal why it would

be predicted poorly. However the PLS analysis of this model, described below, does shed

some light on the behavior of this compound in the linear model.

The three descriptors used in the model were MDEN-23, RNHS-3 and SURR-5.

The MDEN-23 descriptor is the molecular distance edge vector21 between secondary and

tertiary nitrogens. The descriptor is defined as the geometric mean of the topological

path lengths between secondary and tertiary nitrogens. The original implementation

of this descriptor only considered carbons and can be interpreted as characterizing the

extension of side chains from the main body of a molecule.22 The characteristic feature

of the compounds in this study is that they all contain a piperazine and pyrimidine

substructure. The two substructures are connected via the nitrogen on the piperazine

group. As a result the MDEN-23 descriptor captures the linkage between the two rings.

Furthermore, a number of compounds have side groups containing secondary and (or)

tertiary nitrogens (examples include compounds 5, 32 and 54). The MDEN-23 descrip-

tor thus characterizes the “nitrogen backbone” of these compounds. For the compounds

in this study, tertiary nitrogens were generally members of cycles and all compounds

had central pyrimidine and piperazine rings. As a result, larger values of this descriptor

indicate the presence of cyclic and non-cyclic side chains containing nitrogen.
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The RNHS-3 descriptor is a hydrophobic surface area (HSA) descriptor developed

by Stanton et al.23 It is defined as

max(SA−)
∑

Hi

log P
(7.1)

where max(SA−) is the surface area of the most hydrophilic atom, Hi are the hydrophilic

constants (which are values of Wildman and Crippens24 atomic hydrophobicity constants

that are less than 0) and log P is the logarithm of the octanol-water partition coefficient.

Thus, this descriptor is a measure of the relative hydrophilic surface area of a molecule.

The presence of this descriptor in the model is not surprising considering that all com-

pounds in the study contain three or more nitrogens along with oxygens in a number of

cases.

The SURR-5 descriptor is a modification of the HSA descriptor described by

Mattioni.25 The original HSA descriptors classified atoms as either hydrophilic or hy-

drophobic using the atomic hydrophobicity constants of Wildman and Crippen.24 In the

modified version hydrophobic atoms are divided into low hydrophobic (atoms with hy-

drophobic constants between 0 and 0.4) and high hydrophobic (atoms with hydrophobic

constants greater than 0.4). The modification increases the differentiability of the HSA

descriptors and has been shown to be effective in structure-activity studies.25 SURR-5

is defined as the ratio of the atomic constant weighted hydrophobic (low) surface area

and the atomic constant weighted hydrophilic surface area. This descriptor thus char-

acterizes the various portions of the molecular surface in terms of hydrophobicity and

hydrophilicity. Absolute values greater than one indicate that the molecular surface

is mainly hydrophobic, and values less than one indicate that the molecular surface is

mainly hydrophilic.

To ensure that the results described above did not arise by chance, randomized

runs were carried out. A randomized run consisted of scrambling the dependent variable

and building the model using the same descriptors as in the original model. This proce-

dure was repeated 500 times and the average values of the R2 and RMSE were calculated

for both the training and prediction sets. It is expected that if a true structure-activity

relationship is captured by the original model, the randomized models should exhibit

lower values of R2 and higher values of RMSE when compared to the original model.

The results from our runs indicate this to be the case. The average value of R2 and

RMSE for the training set was 0.05 and 0.72, respectively. For the prediction set they

were 0.08 and 1.04, respectively. The statistics of the randomized runs are summarized
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in Table 7.4. It should be noted that in all the runs compound 55 was not removed from

the prediction set.

The 3-descriptor, linear model was then subjected to a PLS analysis to provide

an interpretation of the structure-activity relationship embodied by the model. This

technique has been described by Stanton26 and the details of the interpretation method-

ology was presented in Section 3.6. A number of examples of this technique have been

reported.22,26 The PLS analysis was carried out with Minitab27 using a leave-one-out

cross-validation scheme. The results of the PLS analysis indicated that all 3 components

were validated and thus the model was not overfit. A summary of the statistics for the

3 components are shown in Table 7.5. Table 7.6 shows the X-weights for the 3 PLS

components. The X-weights for a given component indicate the contributions of each

descriptor to that component. As can be seen, in each component one descriptor has

a very high absolute value and thus is the main contributor to that component. We

consider each component separately and use the weights and the score plots (Figures

7.4, 7.6 and 7.8) to interpret the structure-activity trend characterized by the model.

The most heavily weighted descriptor in PLS component one is SURR-5. As can

be seen, its weight is significantly higher than the other two descriptors and thus plays

an important role. Figure 7.4 shows the score plot for the first PLS component. Points in

the upper right and lower left are correctly predicted as active and inactive compounds

respectively. The structures of some representative active and inactive compounds for

this component are compared in Figure 7.5. Compounds 75, 84, 86 and 87 are regarded

as active and they are characterized by high absolute values of the SURR-5 descriptor.

From the description of the SURR-5 descriptor, this indicates that active compounds

are characterized by a large hydrophobic surface area. This is consistent with the fact

that the cell based assay used by Pandey et al.3 reports the activity of the compounds

against the kinase target modulated by their ability to pass through the cell membrane.

Clearly, compounds with a higher proportion of hydrophobic surface area would have

a better ability to enter the cell. Component 1 does not under-predict any compounds

as shown by the empty upper left corner. However, compounds 11, 21, 30 and 55 are

over-predicted by this component. An interesting point to note is that compound 55

which was a significant outlier in the linear model (and is also an outlier in the nonlinear

CNN model) has a high absolute value of the SURR-5 descriptor but has a low observed

activity (-0.39 − log(IC50) units). As a result this compound does not follow the general

structure-activity trend for the SURR-5 descriptor. As will be shown in the results for the

random forest, the SURR-5 descriptor is a very significant descriptor. Since 55 does not
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follow the trend for this descriptor this explains to some extent its position as an outlier.

Compounds 50, 91 and 93 are predicted correctly as inactive and are characterized

by low absolute values of the SURR-5 descriptor. Considering the structures shown

in Figure 7.5 it is clear that the piperazinylquinazoline backbone is common to both

active and inactive structures. The active structures shown (as well as in nearly all

the active compounds for this component) all have a bulky hydrophobic group linked

to the 7 position on the quinazoline ring. However, compound 50 has a piperazine

ring linked to the 7 position but exhibits a low activity. This can be understood by

considering the molecular surfaces. Figures 7.9, 7.10 and 7.11 show molecular surfaces

for compounds 75, 93 and 50 colored by hydrophobicity values, drawn using PyMOL.28

Blue regions indicate areas of high hydrophilicity and red regions indicate areas of high

hydrophobicity. The bulky piperidine group in 75 is largely hydrophobic compared to

the trimethyl amine group in 93 which has a distinct hydrophilic center. In light of

these observations, the surface of 50 shows that the amide center on the piperazine ring

creates a large hydrophilic center and thus is similar in this respect to 93. One would

thus expect that activity would be improved by having bulky groups without hydrophilic

centers connected to the 6 or 7 position on the quinazoline ring.

The most heavily weighted descriptor in PLS component 2 is MDEN-23. Figure

7.6 shows the score plot for the second PLS component. Compounds predicted correctly

as active (8, 18 and 19) exhibit very high values of this descriptor whereas compounds

predicted correctly as inactive (54, 66, 94 and 100) exhibit smaller values. Large

values of this descriptor are characterized by a larger number of longer paths between

secondary and tertiary nitrogens. This may be indirectly interpreted as a count of

nitrogens. Pandey et al.3 mention that in several cases removing basic groups (such

as secondary amines in this case) greatly reduces potency. Thus, larger numbers of

secondary nitrogens would enhance the activity of potential inhibitors. Another aspect

of this descriptor that has been described previously is that it may be interpreted, in the

case of the current dataset, as an indicator of nitrogen containing rings separated by long

paths. This would imply that compounds with large cyclic side chains connected to the

backbone via long chains would exhibit higher values of this descriptor. The structures

of some of the active and inactive compounds are shown in Figure 7.7. It is evident

that the active compounds have bulky nitrogen containing side groups on the phenoxy

ring. In the case of the compounds shown here it is an indole group. In the case of the

inactive compounds these are absent. This confirms the observations made by Matsuno29

and Pandey3 that bulky hydrophobic side groups along with electron donating centers
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enhance activity. However, 54 does appear to be anomalous in that it does contain a

relatively hydrophobic side group (attached to the quinazoline ring) yet is inactive.

Once again the importance of the SURR-5 descriptor is evident as the second

component under-predicts a large number of active compounds which were correctly

predicted by component 1. However, component 2 corrects for the over-prediction of

some of the compounds from component 1. As can be seen from the score plot in Figure

7.6, compounds 11, 21, 30 and 55 are now shifted towards the lower left. Thus, this

component compensates for the over-prediction of these compounds by component 1 by

taking into account bulky hydrophobic groups attached to the phenyl ring. It should be

noted that though 55 is predicted relatively better in this component than the previous

one, it is still midway between the two lower quadrants. However, it does follow the trend

for the MDEN-23 descriptor (i.e., lower values indicate lower activities) better than for

the SURR-5 descriptor

Finally, we consider PLS component 3. Table 7.5 shows that the increase in R2

gained by adding component 3 to the model is only 0.01. Thus, it is expected that this

component will not be able to explain any significant structure-activity trend described

by the most heavily weighted descriptor (RNHS-3). As can be seen from the score plot

(Figure 7.8), this component does not predict any low activity compounds. Furthermore

the under-predicted compounds (93 and 91) have already been correctly predicted as

inactive by component 1 and the over-predicted compounds in the lower right corner

were also correctly predicted as moderately inactive by components 1 and 2. However

this component does contribute to the structure-activity relationship to some extent by

correctly predicting compounds 47 and 96 as active whereas they were under-predicted

by component 2.

Combining the two main trends discussed in this section, we see that there is a

competition between a requirement for bulky hydrophobic side groups and higher num-

bers of nitrogens (which create hydrophilic centers). The fact that component 1 explains

the majority of the structure-activity trend implies that the latter requirement plays

a stronger role. Thus it may be expected that compounds with a piperazinylquinazo-

line backbone would exhibit increased activity by having bulky hydrophobic nitrogen

containing groups attached to the phenyl moiety as well as at the quinazoline moiety.

Furthermore, bulk may be increased at the quinazoline moiety by attaching side groups

at both the 6 and 7 positions. This would imply that the groups would have to be bonded

by relatively long paths to the 6 and 7 positions to avoid steric hindrance. Assuming that

the linker groups contain nitrogen, this would result in larger values of the MDEN-23
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descriptor for those compounds. And as has been shown, large values of this descriptor

correlate with higher activities.

As noted before, this dataset had been studied by Khadikar11 who developed

a set of linear regression models. However their methodology differed significantly in

that they used the compounds with reported activities in the absence of human plasma.

As a result this restricted the size of the dataset. Furthermore the linear models were

developed after removing 10 compounds from the already reduced dataset. Finally,

their models were developed using a stepwise linear regression technique which is not

necessarily an efficient way to search for optimal descriptor subsets.30,31 The best linear

model reported in this work exhibits a lower value of R2 than the corresponding 3-

descriptor model reported by Khadikar. However, considering the fact that this statistic

is well known to be misleading, and the fact that we used a larger dataset, we believe

that the lower value of R2 for our model does not detract from its main utility as an

interpretive model. Furthermore, the descriptors present in our best linear model allow a

clear interpretation of the structure-activity trend which confirms observations made by

Pandey et al.3 The topological descriptors present in the model described by Khadikar

do not lend themselves to a detailed interpretation.

7.4.2 Nonlinear CNN Models

Nonlinear CNN models were developed by using the CNN routine as the objective

function for the genetic algorithm. The full training set of 57 compounds was used. For

a given CNN architecture the descriptor space was searched for subsets that lead to

CNN models with low values of the cost function described in Section 3.4.2. Once a

number of suitable subsets were found, the number of hidden layer neurons were varied

to determine the optimal CNN architecture. This procedure resulted in a 7–3–1 CNN

model. The statistics of the model are given in Table 7.7. A comparison of the statistics in

Tables 7.7 and 7.2 clearly indicate the improved performance of the nonlinear CNN model

compared to the linear model. The seven descriptors present in the model are N5CH,32–34

WTPT-3,35 WTPT-4,35 FLEX-4, RNHS- 3,23 SURR-523 and APAVG. It should be noted

that two of the descriptors (RNHS-3 and SURR-5) are also present in the best linear

model. N5CH is the number of 5th order chains which are defined as a sequence of 5

atoms containing a ring. This definition thus includes 5-membered rings, 4-membered

rings with a methyl side chain and a 3-membered ring with an ethyl side chain. The

WTPT descriptors are based on Randic’s molecular ID and are termed weighted path
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descriptors. They combine features of connectivity indices32–34 and path counts and

are independent of molecular geometry. WTPT-3 considers all weighted paths starting

from any heteroatom and WTPT-4 considers weighted paths starting only from oxygen

atoms. The FLEX-4 descriptor characterizes conformational flexibility. More specifically

this descriptor evaluates the fractional mass of the rotatable atoms. RNHS-3 and SURR-

5 have been described previously. Finally, the APAVG descriptor is based on atom pairs

as defined by Carhart et al.36 The atom pair method describes molecular features by

considering pairs of atoms together with the path between them. As a result, a given

molecule will have a set of atom pair strings which contain the start and end atom types

and the path length between them. These atom pair strings can be hashed to give a

32 bit number which have been used as a similarity measure. APAVG is defined as the

average of the atom pair hash values.

Figure 7.12 shows a plot of the predicted versus observed − log(IC50) values from

the CNN model. It is encouraging to see that the performance of the nonlinear model

was very good on the training set as shown the RMSE and R2 values. The plot is also

substantially less scattered than the corresponding plot for the linear model. As noted

on the plot, there are two possible prediction set outliers. When compound 55 was

removed from the prediction set and the remaining compounds were processed by the

model, the R2 value for the prediction set rose to 0.72 and the RMSE decreased to 0.27.

As in the case of the linear model, the nonlinear CNN model was also tested for

random correlations. As before, the dependent variable was scrambled and the CNN

model rebuilt. The procedure was repeated 100 times and the averages of the RMSE

and R2 values are reported in Table 7.8. As can be seen the average RMSE is more

than triple that of the original runs. The average values of R2 are also very poor. These

results indicate that chance played very little role in the performance of the CNN model.

7.4.3 Random Forest Model

The linear and nonlinear models presented so far have two descriptors in common,

RNHS-3 and SURR-5. We also note that using the genetic algorithm resulted in a large

number of linear and nonlinear models which contained these descriptors. SURR-5

was present in more than 90% of the models evaluated. Clearly, this descriptor must

be information rich. The role played by this descriptor in the linear model has been

analyzed using PLS and was described above.
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We built a random forest model to investigate whether it would provide any

further information regarding the importance of descriptors, specifically SURR-5. As

mentioned previously random forest parameters were tuned using a grid search and the

final forest was built with 500 trees, a node size of 5, and 13 descriptors were used at each

split point. The model was built using all the compounds in the dataset and the entire

reduced pool of 41 descriptors. The predictive ability of this model was not significantly

better than the linear regression or nonlinear CNN models. However our main focus

was on the importance ascribed to specific descriptors by the random forest model. The

procedure by which descriptor importances are obtained from a random forest model has

been described in Section 2.3.1. Figure 7.13 shows a plot of descriptor importance (only

the 10 most important descriptors are shown, ranked in decreasing order of importance).

It is clear that SURR-5 is deemed to be the most important descriptor. Interest-

ingly, RNHS-3 and MDEN-23 are ranked relatively low. Furthermore, the PLS analysis

indicated that for the linear regression model, MDEN-23 was able to account for more

of the structure-activity trend compared to RNHS-3. From Figure 7.13 it is clear that

the increase in MSE is not very large in going from MDEN-23 to RNHS-3. At the same

time it should be noted that the algorithms underlying PLS and random forests are

substantially different. Most importantly, the random forest is working with the whole

reduced pool (41 descriptors) and thus it is able to compare and contrast more descriptors

than considered in the PLS analysis. Thus a relationship detected by a PLS analysis

will not necessarily show up in a random forest. However it is encouraging that the

most important descriptor from the random forest model describes the majority of the

structure-activity trend in the PLS analysis. We also note that the CNN model contains

the two most important descriptors, as identified by the random forest. Furthermore

the remaining descriptors in the CNN model are present in the top 20 descriptors, as

measured by the random forest. This is not surprising as the CNN model is built by

allowing the GA to search for the best 7-descriptor subset from the whole, 41-descriptor,

reduced pool. Once again, a direct correspondence between descriptors is not expected

due to the different algorithms underlying the respective models.

The above discussion indicates the relative importance of the SURR-5 descriptor

in both linear and nonlinear models. Since SURR-5 describes the hydrophobicity of a

surface we investigated its relation to the log P values of the compounds. The log P

values were calculated using a fragment based approach developed by Mattioni for the

HSA descriptors mentioned earlier. A scatter plot of log P versus SURR-5 for the dataset

showed no distinct correlations (R2 = 0.17). We also made scatter plots of log P versus
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the other descriptors, and none of them showed any correlations (R2 ranging from 0.01

to 0.20) except in the case of RNHS-3. However this is to be expected as the functional

form of this descriptor includes the log P value of the compounds.

We also investigated whether the most important descriptors from the random

forest model would lead to good linear or CNN models. We evaluated a regression model

and carried out a PLS analysis using the top three descriptors but the RMSE and R2

were poorer than those reported for the best linear model. Even though the PLS analysis

validated all 3 descriptors, the total R2 explained was less than for the best model. The

descriptors were also used in CNN models. Three architectures were investigated, 3–2–1,

3–3–1 and 3–4–1. However none of the models performed significantly better than the

reported model.

7.5 Conclusions

The results presented in this chapter indicate that the linear regression and CNN

models developed during this study, exhibit interpretability as well as predictive ability.

Though the linear model was developed mainly for purposes of structure-activity inter-

pretation, removal of one prediction set outlier improved its predictive ability drastically.

The application of a PLS analysis allows for the interpretation of the structure-activity

trends embodied in the model. The interpretation clearly indicates the importance of

the hydrophobic surface area descriptor, SURR-5. This is also confirmed by the random

forest model which provides a measure of descriptor importance. The model ranked

SURR-5 as the most important descriptor. However, the other descriptors in the lin-

ear are also relatively important with respect to the whole descriptor pool. The main

conclusions from the PLS interpretation indicate bulky hydrophobic groups and nitro-

gen centers increase activity. These observations have been made experimentally, thus

supporting our theoretical model. As noted before, these two trends compete against

each other. However, the PLS and random forest results also indicate the relatively

more important role of hydrophobic groups. The CNN model was developed primarily

for predictive ability as such models are generally not amenable to interpretation.22 It

exhibited good statistics for both training and prediction. Furthermore it also contained

the top two descriptors, as identified by the random forest, including SURR-5, once again

underlying the importance of this descriptor to the structure-activity relationship.

An interesting extension to this work would be to develop a 3-D QSAR model

using CoMFA37,38 which would allow a more detailed view of the specific interactions that
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are described by our 2-D models. The predictions described in the preceding sections

are based on the correlation of molecular descriptors to experimental activity and thus

may be considered relatively abstract. That is, the 2-D methodology we employ cannot

provide a direct view of the binding between these compounds and the PDGF receptor,

and hence inhibitory activity. This implies that any conclusions made on the basis

of our models are oriented towards the activity value rather than activity mechanism

(via binding features). A 3-D method such as CoMFA would allow for a more direct

understanding of the interactions of the compounds considered here with the PDGF

receptor. In addition, a CoMFA model would allow for the prediction of binding energies.

Combined with a systematic modification of the side groups at the 6 and 7 positions in-

silico, this would allow not only confirmation of the experimental data described here,

but could also be used as a stepping stone to the synthesis of more potent inhibitors.

The fundamental requirement for such a study would the crystal structure of PDGFR.

The crystal structures of tyrosine kinase receptors related to the PDGF receptor have

been reported39,40 though we are not aware of crystal structures of the PDGF receptor

specifically. Using 3-D structures based on homology modeling would possibly allow the

initial development of a binding model for this receptor and the compounds described

here.

In summary this work resulted in the development of 2-D QSAR models which

are able to provide a detailed interpretation of the structure-activity relationship for the

PDGFR inhibitors studied as well as a predictive model which could conceivably be used

as a screening tool for analogous compounds.
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Table 7.1. The regression statistics for the best linear regression model.

Descriptor β Standard Error t P VIF

Constant 0.50529 0.0499 10.129 1.59× 10−14

MDEN-23 0.13957 0.0516 2.703 8.97× 10−3 1.23

RNHS-3 0.23205 0.0501 4.576 2.49× 10−5 1.26

SURR-5 -0.43415 0.0529 -8.19 2.56× 10−11 1.12

MDEN-23 - molecular distance edge vector between secondary and tertiary
nitrogens;21 RNHS-3 - relative hydrophilic surface area23 defined as the
product of the sum of the hydrophilic constants and surface area of the
most hydrophilic atom divided by overall log P ; SURR-5 - the ratio of
atomic constant weighted hydrophobic (low) surface area to the atomic
constant weighted hydrophilic surface area23,25

Table 7.2. A summary of overall statistics for the best
linear regression model.

Number of Molecules RMSE R2

Training set 65 0.38 0.65

Prediction set 13 0.47 0.38

Table 7.3. Ranges of the descriptors used in
the best linear regression model.

Descriptor Maximum Minimum Mean

MDEN-23 7.466 1.784 2.796

RNHS-3 -1.637 -37.726 -4.752

SURR-5 -1.633 -4.423 -3.180
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Table 7.4. The average statistics for the training and prediction set
predictions made by 500 randomized models.

R2 RMSE

Mean Std. Deviation Mean Std. Deviation

Training Set 0.05 0.04 0.72 0.03

Prediction Set 0.08 0.11 1.04 0.12

Table 7.5. A summary of the statistics from the PLS analysis
of the best 3-descriptor linear model.

Component X Variance Error SS R2 PRESS Q2

1 0.51 14.80 0.52 16.67 0.45

2 0.78 12.11 0.60 13.43 0.56

3 1.00 12.07 0.61 13.27 0.56

Table 7.6. The weights for the 3 validated components from
the PLS analysis of the 3-descriptor linear model.

Descriptor Component 1 Component 2 Component 3

MDEN-23 -0.16 0.93 0.30

RNHS-3 0.55 -0.17 0.81

SURR-5 -0.82 -0.29 0.48
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Table 7.7. The statistics for the best nonlinear CNN model.

Number of Molecules RMSE R2

Training Set 57 0.22 0.94

Cross Validation Set 9 0.21 0.90

Prediction Set 13 0.32 0.61

Table 7.8. Summary of the statistics for the training, cross-validation and
prediction sets from randomized runs using the best CNN model*.

R2 RMSE

Mean Std. Deviation Mean Std. Deviation

Training Set 0.10 0.19 0.71 0.11

Cross-validation Set 0.10 0.23 0.96 0.14

Prediction Set 0.01 0.10 1.11 0.14
* The architecture used was 7–3–1
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Fig. 7.1. A plot of the studentized residuals from the 3-descriptor linear
model with outliers marked.
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Fig. 7.2. A plot of observed versus predicted − log(IC50) values from the
best linear model after training set outliers were removed. The annotated
point represents a prediction set outlier.



202

N
N

N

N

N

H
NO

O

O

CN

Fig. 7.3. The structure of the prediction set outlier (55) from the best
linear and nonlinear CNN models.



203

−4 −3 −2 −1 0 1

−4
−2

0
2

X Score

Y 
Sc

or
e

11

21

30

50

55

75

84

8687

91

93

Fig. 7.4. The score plot for PLS component 1.
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in − log(IC50) units are provided within brackets.
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Fig. 7.9. Molecular surface plot of 75, colored by hydrophobicity values
(blue is most hydrophilic and red is most hydrophobic).
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Fig. 7.10. Molecular surface plot of 93, colored by hydrophobicity values
(blue is most hydrophilic and red is most hydrophobic).
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Fig. 7.11. Molecular surface plot of 50, colored by hydrophobicity values
(blue is most hydrophilic and red is most hydrophobic).
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Fig. 7.12. A plot of the observed versus predicted − log(IC50) values
for the best nonlinear CNN model. The annotated points are possible
prediction set outliers.
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Fig. 7.13. A variable importance plot generated from the random forest
model built using the reduced descriptor pool with no compounds excluded
from the training or prediction set.*
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* SURR-5 - the ratio of atomic constant weighted hydrophobic (low) surface
area to the atomic constant weighted hydrophilic surface area;23,25
WTPT-3 - sum of path lengths starting from heteroatoms;35 RNH-3 - sum
of hydrophilic constants divided by the value of log P;25 MOLC-8 -
path-cluster of length 4 molecular connectivity index;41 WTPT-5 - sum of
path lengths starting from nitrogen;35 THWS-1 - total hydrophobic
weighted surface area25 defined as the sum of the product of atomic log P
values and hydrophobic atom surface areas; WNHS-2 - surface weighted
hydrophilic surface area25 defined as the product of the hydrophilic surface
area multiplied by the total molecular surface area divided by 1000;
RNHS-3 - relative hydrophilic surface area23 defined as the product of the
sum of the hydrophilic constants and surface area of the most hydrophilic
atom divided by overall log P; 2SP3-1 - the number of sp3 carbons bound
to two other carbons; MDEN-23 - molecular distance edge vector between
secondary and tertiary nitrogens21



213

References

[1] Kurup, A.; Garg, R.; Hansch, C. Comparative QSAR Study of Tyrosine Kinase

Inhibitors. Chem. Rev. 2001, 101, 2573–2600.

[2] Iida, H.; Seifert, R.; Alpers, C.; Gronwald, R.; Philips, P.; Pritzl, P.; Gordon, K.;

Gown, A.; Ross, R.; Bowen-Pupe, D. Platelet Derived Growth Factor (PDGF) and

PDGF Receptor (PDGFR) Are Induced in Mesangial Proliferative Nephritis in The

Rat. Proc. Natl. Acad. Sci. 1995, 88, 6560–6564.

[3] Pandey, A.; Volkots, D. L.; Seroogy, J. M.; Rose, J. W.; Yu, J.-C.; Lambing, J. L.;

Hutchaleelaha, A.; Hollenbach, S. J.; Abe, K.; Giese, N. A.; Scarborough, R. M.

Identification of Orally Active, Potent, and Selective 4-Piperazinylquinazolines as

Antagonists of the Platelet-Derived Growth Factor Receptor Tyrosine Kinase Fam-

ily. J. Med. Chem. 2002, 45, 3772–3793.

[4] Schlessinger, J.; Ullrich, A. Growth Factor Signaling By Receptor Tyrosine Kinases.

Neuron 1992, 9, 383–391.

[5] Palmer, B.; Kraker, A.; HArtl, B.; Panopoulos, A.; Panek, R.; Batley, B.; Lu, G.;

Trumo-Kallmeyer, S.; Showalter, H.; Denny, W. Structure-Activity Relationships

for 5-Substituted 1-Phenylbenzimidazoles as Selective Inhibitors of the Platelet-

Derived Growth Factor Receptor. J. Med. Chem. 1999, 42, 2373–2382.

[6] Kubo, K.; Shimizu, T.; Ohyama, S.; Murooka, H.; Nishitoba, T.; Kato, S.;

Kobayashi, Y.; Yagi, M.; Isoe, T.; Nakamura, K.; Osawa, T.; Izawa, T. A Novel

Series of 4-Phenoxyquinoxazolines: Potent and Highly Selective Inhibitors of PDGF

Receptor Autophophorylation.. Bioorg. Med. Chem. Lett. 1997, 7, 2935–2940.

[7] Boschelli, D. H. et al. Synthesis and Tyrosine Kinase Inhibitory Activity of

A Series of 2-Amino-8h-Pyrido[2,3-D] Pyrimidines: Identification of Potent, Se-

lective Platelet-Derived Growth Factor Receptor Tyrosine Kinase Inhibitors.

J. Med. Chem. 1998, 41, 4365–4377.

[8] Klutchko, S. R. et al. 2-Substituted Aminopyrido[2,3-d]pyrimidin-7(8H)-ones.

Structure-Activity Relationships Against Selected Tyrosine Kinases and in Vitro

and in Vivo Anticancer Activity. J. Med. Chem. 1998, 41, 3276–3292.



214

[9] Kraker, A.; Hartl, B.; Amar, A.; Barvian, M.; Showalter, H.; Moore, C. Bio-

chemical and Cellular Effects of c-Src Kinase-Selective Pyrido [2,3-d] Pyrimidine

Tyrosine Kinase Inhibitors. Biochem. Pharamcol. 2000, 60, 885–898.

[10] Shen, Q.; Lu, Q.-Z.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Quantitative

Structure-Activity Relationships (QSAR): Studies of Inhibitors of Tyrosine Kinase.

Eur. J. Pharm. Sci. 2003, 20, 63–71.

[11] Khadikar, P. V.; Shrivastava, A.; Agrawal, V. K.; Srivastava, S. Topological

Designing of 4-Perazinylquinazolines as Anatagonists of PDGFR Tyrosine Kinase

Family. Bioorg. Med. Chem. Lett. 2003, 13, 3009–3014.

[12] Lokker, N.; O’Hare, J.; Barsoumian, A.; Tomlinson, J.; Ramakrishnan, V.;

Fretto, L.; Giese, N. Functional Importance of the Platelet Derived Growth Fac-

tor Receptor Extra-Cellular Immunoglobin Like Domains: Identification of PDGF

Binding Site and Neutralizing Monoclonal Antibodies. J. Biol. Chem. 1997, 272,

33037–33044.

[13] Jurs, P.; Chou, J.; Yuan, M. Studies of Chemical Structure Biological Activity

Relations Using Pattern Recognition. In Computer Assisted Drug Design; Olsen, E.;

Christoffersen, R., Eds.; American Chemical Society: Washington D.C., 1979.

[14] Stuper, A.; Brugger, W.; Jurs, P. Computer Assisted Studies of Chemical Structure

and Biological Function; Wiley: New York, 1979.

[15] Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32.

[16] R Development Core Team, “R: A Language and Environment For Statistical Com-

puting”, R Foundation for Statistical Computing, Vienna, Austria, 2004 ISBN 3-

900051-07-0.

[17] Hypercube Inc., “Hyperchem”, 2001.

[18] Sutter, J.; Dixon, S.; Jurs, P. Automated Descriptor Selection For Quanti-

tative Structure-Activity Relationships Using Generalized Simulated Annealing.

J. Chem. Inf. Comput. Sci. 1995, 35, 77–84.

[19] Goldberg, D. Genetic Algorithms in Search Optimization & Machine Learning; Ad-

dison Wesley: Reading, MA, 2000.



215

[20] Wessel, M. Computer Assisted Development of Quantitative Structure-Property Re-

lationships and Design of Feature Selection Routines, PhD thesis, Pennsylvania

State University, 1997.

[21] Liu, S.; Cao, C.; Li, Z. Approach to Estimation and Prediction For Normal Boiling

Point (NBP) of Alkanes Based on a Novel Molecular Distance Edge (MDE) Vector,

λ. J. Chem. Inf. Comput. Sci. 1998, 38, 387–394.

[22] Guha, R.; Jurs, P. The Development of QSAR Models to Predict and Interpret the

Biological Activity of Artemisinin Analogues. J. Chem. Inf. Comput. Sci. 2004, 44,

1440–1449.

[23] Stanton, D.; Mattioni, B. E.; Knittel, J.; Jurs, P. Development and Use of

Hydrophobic Surface Area (HSA) Descriptors for Computer Assisted Quantita-

tive Structure-Activity and Structure-Property Relationships. J. Chem. Inf. Com-

put. Sci. 2004, 44, 1010–1023.

[24] Wildman, S.; Crippen, G. Prediction of Physicochemical Parameters by Atomic

Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873.

[25] Mattioni, B. E. The Development of Quantitative Structure-Activity Relationship

Models for Physical Property and Biological Activity Prediction of Organic Com-

pounds, PhD thesis, Pennsylvania State University, 2003.

[26] Stanton, D. On The Physical Interpretation of QSAR Models. J. Chem. Inf. Com-

put. Sci. 2003, 43, 1423–1433.

[27] Minitab, “Minitab”, 2003.

[28] DeLano, W. “The PyMOL Molecular Graphics System”, 2002.

[29] Matsuno, K.; Ichimura, M.; Nakajima, T.; Tahara, K.; Fujiwara, S.; Kase, H.;

Giese, N.; Pandey, A.; Scarborough, R. M.; Yu, J.-C.; Lokker, N.; Irie, J.;

Tsukuda, E.; Oda, S.; Nomoto, Y. Potent and Selective Inhibitors of PDGFR

Phosphorylation. I. Synthesis and Structure-Activity Relationship of A New Class

of Quinazoline Derivatives. J. Med. Chem. 2002, 45, 3057–3066.

[30] Derksen, S.; Keselman, H. J. Backward, Forward and Stepwise Automated Sub-

set Selection Algorithms: Frequency of Obtaining Authentic and Noise Variables.

British Journal of Mathematical and Statistical Psychology 1992, 45, 265–282.



216

[31] Mantel, N. Why Stepdown Procedures in Variable Selection. Technometrics 1970,

12, 621–625.

[32] Kier, L.; Hall, L. Molecular Connectivity VII: Specific Treatment to Heteroatoms.

J. Pharm. Sci. 1976, 65, 1806–1809.

[33] Kier, L.; Hall, L. Molecular Connectivity in Structure Activity Analysis.; John

Wiley & Sons: Hertfordshire, England, 1986.

[34] Kier, L.; Hall, L.; Murray, W. Molecular Connectivity I: Relationship to Local

Anesthesia.. J. Pharm. Sci. 1975, 64,.

[35] Randic, M. On Molecular Idenitification Numbers. J. Chem. Inf. Comput. Sci.

1984, 24, 164–175.

[36] Carhart, R.; Smith, D.; Venkataraghavan, R. Atom Pairs as Molecular Features in

Structure-Activity Studies: Definition and Applications. J. Chem. Inf. Comput. Sci.

1985, 25, 64–73.

[37] Cramer III, R.; Patterson, D.; Bunce, J. Comparative Molecular Field Anal-

ysis (CoMFA). I. Effect of Shape on Binding of Steroids to Carrier Protiens.

J. Am. Chem. Soc. 1988, 110, 5959–5967.

[38] Cramer III, R.; Patterson, D.; Bunce, J.; Frank, I. Crossvalidation, Bootstrap-

ping and Partial Least Squares Compared with Multiple Regression in Conventional

QSAR Studies. Quant. Struct-Act. Relat. Pharmacol.,Chem. Biol. 1988, 7, 18–25.

[39] McTigue, M.; Wickersham, J.; Pinko, C.; Showalter, R.; Parast, C.; Tempczyk-

Russell, A.; Gehring, M.; Mroczkowski, B.; Kan, C.; Villafranca, J.; Appelt, K.

Crystal Structure of The Kinase Domain of Human Vascular Endothelial Growth

Factor Receptor 2: A Key Enzyme in Angiogenesis. Structure 1999, 7, 319–330.

[40] Mohammadi, M.; Froum, S.; Hamby, J.; Schroeder, M.; Panek, R.; Lu, G.;

Eliseenkova, A.; Green, D.; Schlessinger, J.; Hubbard, S. Crystal Structure of

an Angiogenesis Inhibitor Bound to the FGF Receptor Tyrosine Kinase Domain.

EMBO J. 1998, 17, 5896–5904.

[41] Balaban, A. Higly Discriminating Distance Based Topological Index.

Chem. Phys. Lett. 1982, 89, 399–404.


