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Chapter 6

The Development of QSAR Models To Predict

and Interpret the Biological Activity of

Artemisinin Analogues

6.1 Introduction

Qinghao (Artemisia annua) is an herb that has been used for over 2000 years in

Chinese medicinal practice to treat fevers.1 In 1972 the active compound of this herb,

artemisinin, was isolated and was demonstrated to have significant antimalarial activ-

ity.1 This finding was significant because artemisinin is structurally very different from

the standard family of antimalarial drugs, which are based on quinine and its synthetic

analogs. Subsequent research led to derivatives1,2 of artemisinin such as artemether,

arteether and artesunate (Fig. 6.1). The artemisinin family of molecules has been ex-

tensively studied to elucidate its mechanism of action as an antimalarial and to develop

more potent and selective antimalarial agents.3–6 An essential feature of artemisinin (and

analogous molecules) activity is hypothesized to be the presence of a peroxide bridge,

which forms a bond with a high valence non-heme iron molecule, leading to generation

of free radicals.4,5

A number of QSAR studies have also been reported for prescreening of prospective

artemisinin analogs for antimalarial activity.7–15 A number of these studies10–12 have

used comparative molecular field analysis (CoMFA)16,17 as a tool to model the activity

of artemisinin analogs in terms of active site binding. CoMFA is a 3-D QSAR technique

that involves the alignment of a set of molecules in three-dimensional space. Once a

suitable alignment is obtained, a steric or electrostatic field is constructed using a probe

atom. The resultant field is then correlated with the reported activity values of the

molecules. An example of this is the work presented by Avery et al.10 in which they

considered a dataset of 211 artemisinin analogs. They performed PLS analyses of several

This work was published as Guha, R.; Jurs, P.C., “The Development of QSAR Models To Predict
and Interpret the Biological Activity of Artemisinin Analogues”, J. Chem. Inf. Comput. Sci.,
2004, 44, 1440–1449.
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CoMFA models built using a number of different training sets and a test set of 15 or 20

compounds, depending on the size of the training set. Some of the models considered

racemic compounds in the training set whereas other models excluded them. For the

former class of models the R2 values ranged from 0.82 to 0.88 with a Q2 value of 0.72.

For the latter class of models (in which the training set consisted of 157 molecules) they

obtained R2 values ranging from 0.95 to 0.96 for the training set while Q2 values ranged

between 0.68 and 0.73 during cross validation.

The goal of this study was to use the data collected by Avery et al.10 to de-

velop 2-D QSAR models using the ADAPT18,19 methodology, which is not dependent on

molecular alignments. The study resulted in two models - a linear model that focused

on the interpretation of the structure-activity relationship (SAR) present in the dataset

and a nonlinear CNN model that focused on predictive ability.

6.2 Dataset

The total dataset consisted of the 211 compounds reported by Avery et al.10 For

each molecule, the logarithm of the relative activity (referred to as log RA), defined as,

log RA = log
(

IC50 of artemisinin
IC50 of analog

)
× log

(
MWof analog

MWof artemisinin

)
was used as the dependent variable. However the dataset contained a number of enan-

tiomeric pairs. Since the ADAPT descriptors cannot differentiate between enantiomeric

molecules, the member of each pair with the lowest log RA value was removed. This

resulted in a dataset of 179 molecules. One of the challenging aspects of this dataset

was that it contained several molecules with the same log RA of -4.0. The molecules

with log RA values of -4.0 were structurally diverse, thereby making model development

a difficult task.

6.3 Methodology

The ADAPT methodology involves several steps. Though this has been described

in detail in Chapter 3, we present a short summary describing the specifics of the model

building process employed in this study.

The first step is to calculate molecular structure descriptors for the dataset. The

suite of descriptors calculated by ADAPT include geometric, topological, electronic and

hybrid descriptors. In all, 299 descriptors were calculated for each compound in the
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dataset. However, many of these descriptors were highly correlated or contained redun-

dant information. Hence, the next step involved objective feature selection in which

highly correlated and redundant descriptors were removed from the pool. Using cut-

offs of 0.80 for both the correlation and identical tests resulted in a reduced pool of 65

descriptors which was used for model development.

The molecules were divided into three sets, viz., training, cross-validation and

prediction sets using the activity binning methods described in Chapter 3. This method

resulted in the training set containing 144 molecules, the cross-validation set 17 molecules

and the prediction set 18 molecules.

After objective feature selection, predictive models were generated by using a

simulated annealing20 or genetic algorithm21 to search the descriptor space for optimal

subsets of descriptors. The optimization routines were coupled with either a multiple

linear regression routine or a computational neural network to find the best predictive

models.

6.4 Results

6.4.1 Linear Models

The best linear model consisted of the four descriptors tabulated in Table 6.1.

The first descriptor was the number of 7th order chains.22–24 A 7th order chain is a series

of seven atoms that contain at least one ring. For example, cycloheptane would have one

count of a 7th order chain. Furthermore, a molecule such as 1-methyl benzene would also

have one count of a single 7th order chain because it consists of seven atoms, six of which

form a ring. The second descriptor was the number of single bonds. The third descriptor

was a weighted-path descriptor which is based on a modification of the molecular ID

number,25 described by Randic, in which the molecular ID number is divided by the

total number of atoms in the molecule. Molecular ID numbers were designed to provide

unique identification numbers based on topological path lengths but stressing more on

local features. In data presented by Randic,25 a few general conclusions may be noted

regarding the relation between molecular ID numbers and molecular structure. In the

case of monocyclic systems, larger rings, larger chains and increased substitution (for a

given substituent) lead to higher values of the molecular ID number. Furthermore, for

bicyclic structures, equalized branches as well as substitution at carbons of lower valency

lead to higher values of the molecular ID number. In the original work,25 Randic did

not discuss the case of polycyclic molecules in depth. However, one may conclude that
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for the polycyclic structures used in this study a higher degree of branching (i.e., more

substitutions) coupled with equalized branches in the ring system will lead to a higher

value of the molecular ID number.

The final descriptor used in the model was a molecular distance edge vector,26

denoted by λ. The MDE-14 descriptor is defined as the geometric mean of the topological

path lengths between primary and quaternary carbons. As a result, one may view

this descriptor as characterizing the side chains extending from the main body of a

branched molecule. Thus the descriptor may also be correlated to molecular volume.26

Consequently, molecules with a higher number of rings, longer side chains along with

more substitution in the cyclic region will generally have higher values of MDE-14. As

described in Liu et al.,26 the descriptor provides good discrimination between structural

isomers in a homologous dataset. Table 6.2 shows the maximum and minimum values

for all descriptors in the best linear model.

The statistical details of this model are reported in Table 6.1. All the values of

the t-statistic are significant, with low p-values, which confirms the significance of each

descriptor. The F -statistic (on 4 and 157 degrees of freedom) for this model is 87.1

(compared to the critical value of 2.42 at the 0.05 level of significance) with a p-value of

less than 2 × 10−16. The lowest partial F -value for the coefficients was 20.5 (compared

to a critical value for the F distribution with 1 and 157 degrees of freedom of 3.90 at the

0.05 level of significance). Furthermore, the variance inflation factors are all less than

1.6, which indicates the absence of multicollinearities in the model. Thus the model is

statistically valid. The root mean square error (RMSE) for the training set was 0.86 (R2

= 0.68) and the RMSE for the prediction set was 0.78 (R2 = 0.77). Fig. 6.2 shows a

fit plot of observed versus calculated log RA values. As can be seen from Fig. 6.2 there

are several apparent outliers including a group of molecules having an observed log RA

of -4.0, which are not well predicted. To detect outliers, and to investigate whether the

latter molecules were behaving as outliers or simply as leverage points, a least trimmed

squares27 (LTS) regression algorithm was employed using the R software package.28 We

used LTS rather than the usual least squares regression to detect outliers due to the more

robust nature of the LTS algorithm (it is resistant to non-normal error distributions).

As a result, it is able to differentiate between leverage points and true outliers to a

better extent than ordinary least squares regression. Using the LTS model, a plot of the

standardized residuals versus observation was generated. Fig. 6.3 compares the plots of

the standardized residuals versus the indices of the training set observations, for the least

squares and LTS models. As is evident from the LTS residuals plot, three observations
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appear to be distinct outliers with an additional two being borderline. The structures of

the five molecules considered to be outliers by LTS regression are shown in Fig. 6.4. It

is interesting to note that, in general the group of molecules with log RA values of -4.0

are not considered as outliers by the robust regression algorithm, thus demonstrating

that this model was able to characterize these molecules well. However two members

of the dataset with log RA values of -4.0 were classified as outliers. Though there are

no significant features of these two molecules that sets them apart from other members

of the group, it may be noted that in the case of the outliers the peroxide linkage is

surrounded by one or two hydroxyl groups. However it is not apparent as to how this

would cause the model to classify them as outliers. Once the outliers were detected they

were removed from the training set and ordinary least squares regression was carried

out again. Fig. 6.5 shows the results of a least squares regression in which the molecules

classified as outliers by the LTS model have been removed. The statistics of the resultant

model are improved compared to the original least squares model. The RMSE values

for the training and prediction sets are both 0.77. The R2 value for the training has

increased to 0.74 along with an F -statistic (on 4 and 152 degrees of freedom) value of

108.3 (compared to a critical value of 2.43 at the 0.05 level of significance). The lowest

partial F -value for the coefficients was 26.1 (compared to the critical value of the F

distribution on 1 and 152 degrees of freedom of 3.90 at the 0.05 level of significance).

The R2 for the prediction set using the new model was 0.77. At this point it is useful to

note that in the original work, outlier removal was not carried out. Outlier detection and

regeneration of the linear model in the current work was carried out mainly to increase

the quality of the linear model for subsequent interpretation using the PLS. That is,

linear models were investigated mainly for the purpose of providing interpretive ability

as opposed to predictive ability (which is discussed later, in the context of neural network

models).

Finally, to ensure that the linear models were not due to chance correlations,

the dependent variable for the training set (with the outliers removed) was scrambled a

hundred times and linear models were built with the randomized dependent variables.

If a true QSAR relationship exists with the real dependent variable, results for the

scrambling runs should be very poor. The average R2 for the 100 regressions was 0.02

with values ranging from 0.01 to 0.10. For the prediction set the average R2 was 0.21

with values ranging from 0.0003 to 0.68. Though a value of 0.68 does appear to be

unnaturally high it should be noted that this occurred once in one hundred randomized

runs and that the next largest R2 value was 0.30. It may also be noted that the above
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results are in close accordance to the theoretically expected value of R2 for a model built

from random variables. Thus, these results indicate that chance correlations played a

minimal role (if any) during the model development stages.

The last step in the analysis of the best linear model involved a partial least

squares (PLS) analysis to provide an interpretation of the structure-activity relation-

ships captured by the model. The technique described by Stanton29 enables one to

extract information regarding SAR trends captured by a linear model. The PLS inter-

pretation methodology is discussed in detail in Section 3.6. The PLS analysis of the

4-descriptor model was carried out with the help of the Minitab30 software package (us-

ing a leave-one-out cross validation scheme). The analysis indicated that the number of

optimal components was four, thus the model was not over-fitted. A summary of the

statistics for the 4 components is provided in Table 6.3. Table 6.4 shows the X-weights

for the four valid components. Each PLS component is a linear combination of the four

descriptors used in the model. Thus, the X-weights represent the contribution (or rela-

tive importance) of each descriptor within a given component. However, as can be seen

from Table 6.3, component 4 explains less than 0.5% of the total variance (Q2) explained

by the model and so the following discussion only considers the first three components.

From Table 6.4 it is seen that in component 1, the most highly weighted descrip-

tors are NSB and N7CH. The coefficient for NSB is positive indicating that a larger

number of single bonds is correlated with a higher activity value. On the other hand

the negative coefficient of N7CH indicates that smaller values of this descriptor are cor-

related with higher values of activity. This trend can be seen in molecules 43, 45, 47

and 51 all of which are inactive and have correspondingly high values for the descriptor

N7CH. Molecules 11, 79, 107 and 159 are relatively active and have correspondingly

small values for the N7CH descriptor. The structures of these molecules are compared in

Fig. 6.6 and their positions are marked on the score plot for component 1 (Fig. 6.7). The

feature common to the less active molecules is the fact that they all have an ether linkage

bridging the seven-member ring, whereas the more active molecules contain a peroxide

linkage. As a result of the presence of the ether linkage, the number of 7th order chains

(i.e., a contiguous series of seven atoms containing a ring structure) increases. From

Fig. 6.6 it appears that molecule 51 is similar in size to molecule 107 and thus appears

to invalidate the size trend described above. However molecule 51 does not contain

an endoperoxide group but does have a number of ether linkages. The absence of the

endoperoxide group is responsible for the low activity of this molecule, even though it

is similar in size to the active molecules shown in Fig. 6.6. This is further confirmed
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by the fact that a number of molecules in the dataset containing a peroxide linkage but

lacking the endoperoxide group showed very low activities (with log RA values around

-4.0). Since active compounds contain the endoperoxide group, this trend supports the

theory that antimalarial activity of artemisinins depends on the presence of this group

to form a high valence non-heme iron oxo species4,5 and is evidence for the fact that the

model has been able to capture an important feature of the datasets in the context of

anti-malarial activity.

The other highly weighted descriptor in component 1 is NSB, the number of

single bonds. This descriptor is very simplistic in nature and essentially characterizes

the size of the molecule. Since the weight of the descriptor in the PLS model is positive,

higher activity is correlated with a larger number of single bonds; indicating that larger

molecules will tend to have higher activity, all other factors being equal. This trend can

be seen in the log RA values for compounds 11, 79, 107, and 159 (which are generally

larger and have higher log RA values) and compounds 43, 45, 47 and 51 (which are

generally smaller due to lack of large side chains and have lower log RA values). As can

be seen from the score plot for component 1 (Fig. 6.7) the upper left (over-estimated)

and lower right (under-estimated) regions of the plot are not significantly populated.

Thus it appears that component 1 has been able to capture the majority of information

regarding the molecules. This is also confirmed by the fact that the component 1 explains

60% of the variance (out of a total of 69.7%).

A similar analysis is performed with component 2. From the score plot shown in

Fig. 6.8, it is seen that it accounts for some molecules that component 1 under-estimated.

For example, molecules 116 and 143 are predicted correctly as more active whereas

in component 1 they were under-estimated. The most highly weighted descriptors in

component 2 are NSB and WTPT-2. In contrast to component 1 NSB is now negatively

weighted indicating smaller values correlate with higher activities. This component thus

corrects for larger molecules that might not be active. As a result, it moves molecule

175 from its position in the score plot for component 1 to a position closer to the lower

left quadrant thus compensating for the over-estimation by component 1. As described

previously, the WTPT-2 descriptor essentially characterizes the branched nature of a

molecule, with the presence of larger rings, balanced branches (in the case of bicyclic

molecules), longer chains and increased substitution (for a given substituent) leading to

higher values of the molecular ID number. The molecules in the upper right quadrant

of the score plot for component 2 (Fig. 6.8), such as 91 and 92, support these trends.
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They have relatively low values for NSB. They also have higher values of the WTPT-

2 descriptor, which can be ascribed to the longer side chains. Both compounds are

relatively active. In comparison, compounds 189 and 196 have low values for the WTPT-

2 descriptor (which may be due to the absence of side chains) and are predicted as

inactive by component 2. The structures of these molecules are compared in Fig. 6.9.

In general, component 2 does not predict the inactive molecules very well (since the

lower left quadrant is relatively unpopulated) thereby demonstrating the importance of

component 2 in predicting the active compounds.

In component 3 the molecules that were not accounted for by components 1 and

2 are now correctly predicted as active (135, 185, 194 and 4) as can be seen from

the score plot of component 3 (Fig. 6.10). In addition, compound 186 is also more

accurately predicted thus correcting for the over-estimation by component 2. To some

extent, component 3 makes up for the over- or under-estimations made by components 1

and 2. For this component the most significant descriptors are WTPT-2 and MDE-14. As

mentioned previously, molecules with a higher number of rings, longer side chains along

with more substitution in the cyclic region (especially bridging carbons) will generally

have higher values of MDE-14. Taken with the positive sign of the weight for MDE-14,

we may conclude that molecules with extended side chains coupled with substitution in

the ring system (essentially, larger molecules) would exhibit higher activities, a trend

also seen with NSB in component 1. The molecules present in the upper right (133,

135 and 64) satisfy these trends and can be seen to have longer side chains as well as

increased substitution on the rings compared to the inactive molecules. The molecules

with smaller values of MDE-14 (186, 189 and 195) are predicted as inactive compounds.

The structures of these molecules are compared in Fig. 6.11.

It should be noted that a PLS analysis provides a guideline regarding the in-

terpretation of the descriptors in the model and does not provide exact quantitative

descriptions of descriptor contributions. Furthermore the analysis is restricted to the

descriptors present in the best model. In this case, best implies best statistical quality

and not necessarily the presence of meaningful descriptors.

6.4.2 Nonlinear Models

Several of the best nonlinear models selected by the genetic algorithm were ana-

lyzed rigorously in order to find the optimal neural network parameters. The four best

models were further investigated by systematically varying the network architecture.
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The results of the best four models are summarized in Table 6.5. The best model has

a 10–5–1 architecture and contains the descriptors: KAPPA-6,31–33 NDB, MOMI-4,34

N7CH,22–24 MOLC-8,35,36 WTPT-5,25 MDE-12,26 MDE-13,26 ELEC and FPSA-3.37 The

KAPPA-6 descriptor belongs to a class of descriptors termed Kier shape descriptors,

denoted by κ3. These descriptors are defined by the number of vertices and paths of

length m, (1 < m < 3) in a hydrogen depleted molecular graph. KAPPA-6 is the atom

corrected version of the κ3 descriptor and thus accounts for heteroatoms in addition to

carbons. The values of the κ3 descriptor are generally larger when molecular branching

is absent or when branching occurs at the extremities of a molecular graph and thus

this descriptor characterizes centrality of branching in a molecule.38 The NDB is sim-

ply the count of double bonds in the molecule. MOMI-4 is the ratio of the X and Y

components of the principal moment of inertia of the molecule. Thus, this descriptor

provides information about the shape of a molecule in the XY plane. WTPT-5 is a

modification of the molecular ID number25 which only considers nitrogen atoms. The

MOLC-8 descriptor is the 4th order path cluster molecular connectivity index and mea-

sures the degree of branching in a structure. The descriptors MDE-12 and MDE-13 are

the molecular distance edge vectors between primary & secondary and primary & ter-

tiary carbons respectively. The ELEC descriptor is simply the electronegativity of the

molecule. The value of electronegativity is taken as the mean of the HOMO and LUMO

energies. The FPSA-3 descriptor belongs to a class of hybrid descriptors termed CPSA37

descriptors. These combine partial charge and surface area information for a molecule

resulting in a holistic description of polar surface area features. FPSA-3 is defined as the

atom weighted partial positive surface area divided by the total molecular surface area.

It should be noted that the descriptors selected for the best CNN model are

distinct from the descriptors used in the best linear model. The reason underlying this

behavior is due to the different selection criteria that are used to include descriptors in

the respective models from the reduced pool (which was the same for both linear and non-

linear models). At the same time, one must consider the fact that different combinations

of descriptors may be equally valid in describing a SAR trend. Furthermore, since a

linear model is, by definition, restricted to capturing linear relationships, it cannot be

used to investigate subsets of descriptors which when combined non-linearly might better

describe a SAR trend. This is evidenced by using the descriptors from the best CNN

model in a linear model. The resultant residuals are very high and the predictive power

of such a model is very poor and as a result a linear model would not have considered

this subset of descriptors.
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The plot of observed versus calculated values is shown in Fig. 6.12. The RMSE

values for the training, cross-validation and prediction sets were 0.42, 0.47 and 0.76,

respectively. It is important to note that the group of compounds with log RA’s of -

4.0 have been predicted relatively well. The R2 values for the training, cross-validation

and prediction sets were 0.96, 0.94 and 0.88, respectively. To ensure that the behavior

of the model was independent of the composition of the training, cross-validation and

prediction sets the non-linear model described above was regenerated using a leave n%

out procedure. In this procedure the molecules are ranked according to values of their

activity and then grouped, the number of groups being determined from the percentage

left out. Next, an equal number of empty groups are populated by selecting molecules

from each group of the ranked dataset such that the whole range of activity is evenly

distributed across the groups. These groups are then used to create the training, cross-

validation and prediction sets. Essentially, for n groups, the first group is the prediction

set, the second group is the cross-validation set and the remaining n−2 groups constitute

the training set. These sets were then used to build and validate a CNN with a 10–5–1

architecture. In the next step, the last group was made the prediction set, the first group

the cross-validation set and the remaining groups constitute the new training set. The

CNN was rebuilt and validated using these sets. This process is repeated such that each

group acts as the prediction set once. As a result the entire dataset is predicted once.

The whole process is repeated so that each member of the dataset is predicted multiple

times and the final reported value for a molecule is the average of all the predictions for

that molecule.

In this study a leave 14% out procedure was used and repeated 3 times. Thus, each

molecule in the dataset was predicted three times and the final reported value was the

average of these predictions. The results of this procedure are summarized in Table 6.6

and a plot of the observed versus predicted values can be seen in Fig. 6.13. As can be seen

the RMSE values for the cross-validation and prediction are degraded, compared to the

original CNN model. Similar behavior is seen for the R2 values. However, the standard

deviations for these values over all the runs is quite low for the training and cross-

validation sets. indicating that the model trains consistently. However when comparing

these results to the original CNN model, only the statistics for the prediction set should

be compared. The degradation of RMSE and R2 values of the prediction set is to be

expected as the model is trained on different sets of molecules at each stage. The leave

14% out procedure used here gives us a more realistic view of the behavior of this model

when biases due to QSAR set composition are removed.
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To further investigate the effect of QSAR set composition, a CNN model with a

10–5–1 architecture was generated using random sets (i.e., the training, cross-validation

and prediction sets were selected randomly from the dataset). The results of this model

are shown in Table 6.7. Though the RMSE and R2 values for the training and cross-

validation sets are similar to the average values for the leave 14% out based model, the

prediction set performance is significantly degraded. This observation could simply be

explained by considering that a poor combination of QSAR sets was created. However, an

alternative explanation is that due to random set generation, the full range of activities

are not properly represented in the training, cross-validation and prediction sets.

Finally to test whether the results described above could have been due to chance,

Monte Carlo runs were carried out in which the dependent variable is scrambled and mod-

els are built using the scrambled dependant variable. The architecture was maintained at

10–5–1 and the descriptors used were those found in the best nonlinear model above. As

can be seen from Table 6.8, the RMSE values increase significantly with a corresponding

decrease in the R2 values. This appears to indicate chance correlations did not play a

significant role in the results described above.

6.5 Discussion and Conclusions

This chapter presents both linear and nonlinear models to predict anti-malarial

activity for a set of 179 artemisinin analogs. The goal of the project was to create QSAR

models, which were both interpretable as well as having good predictive ability. The

linear regression model was found to be statistically valid and the PLS routine enabled

an investigation of the effects of each descriptor in the model. That is, it was possible to

isolate the action of the individual descriptors and explain specific SAR trends captured

by the descriptors.

The nonlinear models were developed based mainly on their pure predictive ability.

The non-linear model presented both superior predictive ability as well as a relatively

simple neural network architecture. Interpretation of neural network models is difficult

due to the black box nature of the neural network algorithm. Methods exists for a

probabilistic interpretation of neural network classification models.39,40 Techniques also

exist to extract rules and decision trees from CNN regression models.41,42 However these

methods do not allow for a clear interpretation of descriptor contributions, as is available

from a PLS analysis of a linear model, and are not easily combined with the ADAPT

methodology. This problem is studied in more detail, in Chapter 9, where we describe an
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approach to the interpretation of neural network models, based on the PLS interpretation

technique for linear models. Finally, randomization tests showed that the possibility of

chance correlations (if any) in the best models was low.

It may be noted that in both types of models the descriptors themselves are

not necessarily amenable to simple physical interpretation. The ADAPT methodology

seeks the most information rich subset of descriptors for a given model. In many cases

the members of the resultant subset do not have simple physical meaning, but rather

contribute information to the statistical model. That is, many descriptors calculated

by ADAPT are not designed to necessarily provide a simple physical description of a

molecule. Instead, they extract information that, in many cases, may be of a more ab-

stract (such as graph theoretical) nature but provide information about a molecule. An

attempt was made to introduce more meaningful descriptors into the models by replac-

ing some of the selected descriptors with other correlated (and physically meaningful)

descriptors from the reduced pool. In all cases, the resultant models performed poorly

in comparison to the best models reported in this work.

A direct comparison with the original work is not feasible as the model develop-

ment process in this study was different. However the results of the PLS analysis indicate

that in terms of Q2, the current linear model performs comparably to the original PLS

model using 157 docked compounds described by Avery.10 The PLS analysis was also

able to provide an interpretation of the contributions of the individual descriptors in

describing the overall activity of the majority of the molecules. One aspect of model

interpretability would be a ranking of descriptor contributions. However the PLS tech-

nique does not allow a global ranking of individual descriptors since each PLS component

is a linear combination of all the descriptors in the model. Thus such a ranking of de-

scriptor contributions is only valid within a given component. One disadvantage of the

current methodology was the inability to consider enantiomeric pairs compared to the

original work in which the CoMFA methodology was able to handle such pairs. At the

same time the current methodology does not involve the problem of alignments inherent

in the CoMFA approach and furthermore was able to avoid making any assumptions

regarding bioactive conformations.

Finally, though the linear model in this study does not exhibit significant pre-

dictive ability when compared to the models described by Avery,10 it does provide in-

terpretability. Coupled with the good predictive ability of the neural network model

developed in this study we believe that these models would perform well as rapid screen-

ing tools to uncover new and more potent anti-malarial drugs.
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Table 6.1. Statistics for the best linear regression model.

Description β Std. Error t P VIF

Constant -60.56 5.28 -11.50 2× 10−16

N7CH -0.21 0.01 -16.10 2× 10−16 1.60

NSB-12 0.22 0.02 9.40 2× 10−16 1.30

WTPT-2 27.94 2.61 10.70 2× 10−16 1.40

MDE-14 0.11 0.02 4.50 1.18× 10−5 1.50

N7CH - number of 7th order chains;22–24 NSB-12 - number of single
bonds; WTPT-2 - the molecular ID number25 considering only
carbon atoms; MDE-14 - the molecular distance edge vector,26
considering only primary and quaternary atoms.

Table 6.2. Maximum and minimum values for the descriptors used in the
best linear model and the dependant variable.

Dependent variable N7CH NSB WTPT-2 MDE-14

Maximum 1.47 36 37 2.13 19.99

Minimum -4.00 0 12 1.87 0.00
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Table 6.3. Summary of the PLS analysis for the best 4 descrip-
tor Linear model

Component X Variance Error SS R2 PRESS Q2

1 0.19 174.11 0.60 198.22 0.553

2 0.52 140.65 0.68 145.80 0.670

3 0.83 134.82 0.69 141.12 0.684

4 1.00 132.58 0.69 139.05 0.687

Table 6.4. The X-weights for the four optimal PLS components.

Component 1 Component 2 Component 3 Component 4

N7CH -0.68 -0.46 0.34 -0.47

NSB 0.65 -0.56 -0.14 -0.49

WTPT-2 0.27 0.54 0.67 -0.43

MDE-14 0.21 -0.44 0.65 0.59
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Table 6.5. A summary of the various nonlinear CNN models generated.

RMSE R2

Architecture TSET CV SET PSET TSET CV SET PSET Cost

3–2–1 0.81 0.79 0.81 0.66 0.66 0.70 0.67

7–4–1 0.90 0.89 0.80 0.49 0.48 0.76 0.51

7–5–1 0.91 0.92 0.81 0.47 0.42 0.70 0.50

10–5–1 0.96 0.94 0.88 0.42 0.47 0.76 0.44

Table 6.6. A summary of the statistics generated by a 3 round leave 14%
out procedure using the best nonlinear CNN model (10–5–1 architecture).

RMSE R2

TSET CV SET PSET TSET CV SET PSET

Mean 0.44 0.59 0.89 0.91 0.85 0.69

Std. Deviation 0.05 0.10 0.16 0.01 0.06 0.11
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Table 6.7. The results of a nonlinear CNN model (10–5–
1 architecture) using randomly generated training, cross
validation and prediction sets. The descriptors used were
the same as those for the best nonlinear CNN model.

RMSE R2

TSET CV SET PSET TSET CV SET PSET

0.41 0.53 0.68 0.93 0.91 0.81

Table 6.8. The results of a nonlinear CNN model (10–
5–1 architecture) using a scrambled dependant variable.
The descriptors used were the same as those for the best
nonlinear CNN model.

RMSE R2

TSET CV SET PSET TSET CV SET PSET

1.50 1.40 1.60 0.09 0.08 0.01
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Fig. 6.2. A plot of observed versus predicted log RA from the best linear model. The
numbered points are the molecules that were considered to be outliers in the residual plot
generated using LTS regression (see Figs. 6.3 and 6.5).
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Fig. 6.3. A comparison of standardized residuals versus indices of the training set obser-
vations using simple least squares and the more robust LTS algorithm.
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Fig. 6.5. A plot of observed versus predicted log RA after outliers detected via LTS regres-
sion have been removed.
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Fig. 6.7. The score plot for component 1.

Fig. 6.8. The score plot for component 2.
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Fig. 6.10. The score plot for component 3.
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Fig. 6.12. A plot of observed versus predicted log RA produced from the best nonlinear
CNN model using a 10–5–1 architecture.
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Fig. 6.13. A plot showing the predicted versus observed log RA values for the whole dataset
using the best nonlinear CNN model (10–5–1 architecture). This result was obtained by a
leave 14% out procedure which was run 3 times giving 3 predictions for each member of the
dataset. The average value was taken as the final predicted value.
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