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Chapter 5

Determining the Validity of a QSAR

Model: A Classification Approach

5.1 Introduction

Quantitative structure-activity relationship (QSAR) modeling is based on the

construction of predictive models using a set of known molecules and associated activity

values. Such models can be generated using a wide variety of methods ranging from linear

methods (e.g., linear regression and linear discriminant analysis) to non-linear methods

(e.g., random forests and neural networks). As described in Chapter 3, an important

step of the QSAR modeling process, irrespective of the nature of the modeling technique

used, is validation. In all cases, the predictive ability of the models are tested with a

set of molecules (the prediction set), which were not used during the model building

process. Once a model has been built and validated it can be used on data for which no

activity values are available. However, even though a model may have proved to exhibit

good predictive ability based on the statistics for the prediction set, this is not always

a guarantee that the model will perform well on a new set of data. The problem boils

down to the fact that when a model is built and validated we can compare the predicted

values to previously measured activity values. However, when the model is applied to

new data, the predicted values of the activity cannot be compared with actual values.

This leads to a problem: the training set and prediction set statistics may indicate that

the model has good predictive ability. But when we use the model to predict values

for molecules with unknown activity, how can we be sure that the predicted activity

will be close to the actual activity? If the model were able to provide some measure

of confidence for its prediction, this would be helpful. Such confidence measures (also

known as scores) can be defined for various models. Examples include confidence bands

for linear regression models and frequency based confidence measures for decision trees.

However, such measures are specific to the modeling algorithm.

This work was published as Guha, R.; Jurs, P.C., “Determining the Validity of a QSAR Model
- A Classification Approach”, J. Chem. Inf. Model., 2005, 45, 65–73.
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This chapter describes a more general approach that should be applicable to any

form of quantitative model. One possible approach is based on similarity. This is based

on the assumption that a molecule that is structurally very similar (based on some sort

of similarity metric such as atom pair1 similarity or fingerprint similarity) to the training

set molecules will be predicted well because the model has captured features that are

common to the training set molecules and is able to find them in the new molecule. On

the other hand, a new molecule with very little in common with the training set data

should not be predicted very well; that is, the confidence in its prediction should be low.

An alternative approach to linking similarity measures and model quality (defined

by residuals) is classification. In this method, the regression residuals for the training set

are classified as good or bad, and a classification model is trained with the training set

residuals. Once a trained model is obtained, we then predict the class of the prediction

set residuals. However an important requirement for this process is that we be able to

provide some measure of correctness for the predicted class assignments. Clearly this

method does not fully solve the problem, as the classification algorithm would rarely

be 100% correct. However the attractive feature of the approach discussed here is its

generality. That is, it may be applied to any type of quantitative model, whether linear

regression or a computational neural network. Furthermore, depending on how one

defines a good residual or a bad residual, the classification model may be trained to

detect unusual cases.

The fundamental decision that must be made when using the approach described

in this chapter is the actual class assignments of the training set residuals. Since the fact

that a compound is well predicted or poorly predicted is relatively subjective (except in

extreme cases), the initial assignment of classes to the training set residuals is necessarily

somewhat arbitrary. Furthermore, the nature of this class assignment defines the sizes

of the two classes and hence plays a role in the choice of classification algorithm. These

aspects are described in more detail in the following sections.

5.2 Datasets

Since one of the aims of this technique was generality, we attempted to test it on

a variety of data. We considered three datasets covering both physical and biological

properties. The first dataset was obtained from Goll et al.2 and consisted of the boiling

points of 277 molecules obtained from the Design Institute for Physical Property Data
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(DIPPR) Project 801 database. This dataset is relatively diverse but contains several

homologous series.

The second dataset consisted of a 179-compound subset of artemisinin analogues

described by Avery et al.3 We have previously developed and reported linear and CNN

models based on this dataset.4 The linear model from our previous study was used for

the purposes of this work.

The third dataset consisted of 65 molecules. This dataset contained 56 molecules

from a study carried out by Liu et al.5 The remaining 9 molecules were selected from

the literature, such that some were similar in structure to the molecules from Liu and

some were distinctly different so as to be well-defined outliers in the final linear model.

The molecules taken from Liu were all straight chain or branched hydrocarbons whereas

the remaining molecules included polycyclic systems as well as molecules containing

heteroatoms. The dependent variable in the original work was a transformation of the

boiling point defined as

y = log (266.7− BP) (5.1)

where BP was the observed normal boiling points, in degrees Kelvin, of the molecules.

Since the linear model we developed for this dataset did not use the all the molecules

described by Liu, we did not use the logarithmic transformation and instead used boiling

point values directly. The molecules and associated boiling points are shown in Table

5.1.

Each dataset was divided into a training and prediction set. The training set was

used to build a linear model, and the prediction set was used to test the models them-

selves as well as the algorithms developed for this study. In the case of the artemisinin

dataset, the same training and prediction sets that were used to develop the reported

model were used in this study. Training and prediction sets for the DIPPR dataset were

created using the activity binning method. In both cases, the training set contained

approximately 80% of the whole dataset and the remainder was placed in the prediction

set. The sets for the Liu dataset were created by hand. The training set contained 55

compounds selected from Liu, and the prediction set contained 10 compounds. Of these

10 compounds, one was taken from Liu and the remaining nine were selected from the

literature. The reasoning for this specific construction was to allow the prediction set to

contain molecules which were very dissimilar to the training set, so that the resultant

linear model would exhibit distinct outliers.
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5.3 Development of Linear Models

The first step of this study involved the development of a multiple linear regression

model for each dataset. In the case of the artemisinin dataset, we used the linear model

published by Guha et al.4 This model contained four descriptors, and the statistics of

the model are summarized in Table 5.2. Linear models for the DIPPR and Liu datasets

were developed using the ADAPT6,7 methodology described in Chapter 3. In all cases

the final linear models were subjected to a PLS analysis to ensure that they were not

overfitted. The statistics of the models for the DIPPR and Liu datasets selected by this

procedure are summarized in Tables 5.3 and 5.4. Summary statistics for all three linear

models are presented in Table 5.5.

5.4 The Classfication Approach

The aim of this study was to be able to decide whether a compound with unknown

activity will be predicted well by a previously developed model. Though we focused only

on linear regression models, the idea is general enough to be extended to other types of

quantitative models (such as neural networks, support vector machines).

Initial attempts to develop a methodology to answer the above question focussed

on evaluating a similarity measure between the new compound and the training set used

to develop the existing model and then attempting to correlate the similarity measure

with some measure of model quality. As we restricted ourselves to linear models we

considered standard error of predictions and residuals. This line of attack did lead to

the observation of some general trends. That is, compounds that were more similar to

the training set generally exhibited smaller residuals and standard error of predictions.

However, the observations were not conclusive, and the plots of the trends appeared to

be too noisy to be able to draw any firm conclusions.

We then considered a classification approach. That is, can we classify a compound

with no measured activity as well predicted or poorly predicted given a previously gen-

erated model and its associated training set? Our approach was to build a classification

model using the original training set and the descriptors used in the original model and

use this to predict the class of new compounds. The key word here is class. Before

any model can be built we must decide how to classify the training set. We decided to

consider regression residuals, as it would allow the technique to be generalized to other

types of quantitative algorithms. The training set members were classified as bad or
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good depending on whether their residuals were above or below a user specified cut-off

value. This cut-off value plays a central role as it determines the size of the two classes.

Our current strategy is to use a cut-off value obtained by visual inspection of a resid-

ual plot for the training set. The value of the cut-off was selected so that the minor

class contained approximately 20% to 30% of the whole dataset. Clearly this leads to a

highly imbalanced classification problem, but we felt that it would model a real world

application of this technique more closely than allowing the classes to be of similar size.

Alternative (non-arbitrary) methods include classifying training set members as good

or bad depending on whether some regression diagnostic (Cooks distance, Mahalanobis

distance) determined that it was an outlier. Fig. 5.1 shows the plots of residuals along

with a line at the cut-off value for the three datasets studied here. Table 5.6 summarizes

the cut-off values and associated class sizes for each dataset.

5.4.1 Classification Algorithms

Given the training set class structure, the choice of algorithm is guided by two

requirements. First, the goal is to be able to test compounds for which we have no

measured activity value. As a result, the classification algorithm must be able to pro-

duce some measure of confidence in its class predictions or else a probability of class

membership (posterior probability). In the absence of such a quantity the final output

of the classification model does not provide any more information than produced by

simply processing the new compound through the original predictive model. The second

requirement is that the algorithm must be able to handle unbalanced classes. In gen-

eral, several schemes are available that can be used to modify the standard classification

algorithms. These include over-sampling the minority class8 and under-sampling the

majority class.9 Maloof10 discusses the application of receiver operator characteristics

(ROC) analysis in comparing how various sampling strategies and cost schemes affect

classification of skewed datasets. Breiman11 describes a simple method to increase the

size of the dataset without simply repeating observations. The extra samples are termed

convex pseudo-data and the generating algorithm requires a single parameter (as op-

posed to kernel density methods). We investigated the use of this method in attempt to

improve classification accuracy.

We considered a wide variety of classification algorithms: logistic regression, par-

tial least squares (PLS), discriminant analysis, neural networks and random forests.

Random forests were first described by Breiman12 and have been used in a variety of



129

QSAR applications. The original random forest algorithm was not suited for very unbal-

anced datasets, but current implementations13 use a weighting scheme which overcomes

this problem. We decided not to use this algorithm, due to the fact that it works with

large descriptor pools owing to its ability to ignore irrelevant descriptors as well as the

fact that the algorithm is resistant to overfitting. We did not want to build the classifi-

cation models with more (and different) information than was available to the original

regression models. Given that the good performance of random forest models is due to

their ability to build trees based on good descriptor subsets, restricting the descriptor

pool to four or five descriptors would probably result in lower quality random forest

models.

In the case of discriminant analysis, we investigated the use of linear and quadratic

discriminant methods. In each case, the algorithms employed were able to generate

posterior probabilities via a cross-validation scheme. As the results were quite similar we

only present the results of the linear discriminant analysis. All the algorithms mentioned

above were obtained using the R software package.14

As mentioned in the previous section, we used the descriptors from the original

regression model to build the classification model. We also investigated the use of a

similarity measure as a source of extra information. Intuitively, one would expect that a

new molecule that is similar to the molecules in the training set should be well predicted

by the regression model. Thus, in addition to classification models built only with

descriptors from the regression model we also built models that also contained a similarity

value. We chose to use the atom pair similarity described by Carhart et al.1 Atom pair

similarities are calculated between pairs of molecules. To provide a single similarity value

for each compound we calculated the average similarity value between each compound

and all the compounds in the training set.

5.5 Results

Most of the algorithms exhibited good predictive ability considering the fact that

the datasets used were not very large (especially the Liu dataset). As expected, the

neural network performed very well, with a 90% correct prediction rate on the training

set and 72% to 85% correct on the prediction set. The inclusion of the similarity values

as a descriptor did not appear to improve the results significantly.

Table 5.7 shows the confusion matrices for the training and prediction sets gener-

ated using linear discriminant analysis for the artemisinin dataset. The implementation
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used for this study allowed us to specify the prior probabilities for each class. We as-

sumed that the priors could be approximated by the class proportions. Clearly, the

very poor predictions for the minority class indicate the problem due to the imbalanced

nature of the class distributions. To try and remove the bias due to the imbalanced

nature of the problem, the model was regenerated with an over-sampled minority class.

However the results did not improve significantly. To investigate whether extra informa-

tion might improve the situation we also regenerated the model using the averaged atom

pair similarity values as an extra independent variable. We felt that this was justified

(as compared to using extra molecular descriptors) since this descriptor essentially com-

pares the molecules amongst themselves. Table 5.7 displays the confusion matrices for

the resultant model. The predictions for the good class are now 100% but members of

the bad class are mispredicted in all cases. The results for this algorithm when applied

to the DIPPR dataset give similar results. The classes assigned in this dataset are also

quite unbalanced. The confusion matrices are presented in Table 5.8. The results for the

Liu dataset (Table 5.9) are marginally better, more so for the prediction set than the

training set. This is probably due to the slightly higher proportion of the minor class in

the training set.

The results from the PLS classification scheme were not significantly better than

those obtained with LDA and in some cases worse, and as a result we omit their presen-

tation.

Table 5.10, 5.11 and 5.12 present the confusion matrices for the three datasets

generated using a neural network. The network used entropy outputs15 and thus provided

the associated probabilities with each class assignment. In all cases, the inverse of the

class proportions were used as example weights. Table 5.10 shows that the performance

for the artemisinin dataset was not very impressive. However the imbalanced nature of

the dataset does not affect the performance as much as in the case of LDA. In contrast,

the DIPPR dataset showed very good performance using the neural network methodology

as can be seen from Table 5.11. In this case, the bad class was very well predicted in

both the training and prediction sets. Finally the Liu dataset also yielded good results

(Table 5.12). In all cases, the use of average atom pair similarity as an extra independent

variable did not appear to improve results.

Table 5.13 displays the weighted success rates for all the classification methods

on all the datasets. This measure of classification success was described by Weston et
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al.16 and is defined as

w =
1
2

(
No. true positives

Total positives
+

No. true negatives
No. negatives

)
The above expression indicates that 0 ≤ w ≤ 1. As mentioned by Weston, this measure is

suitable for unbalanced classification problems. The values indicate the poor performance

of the LDA (in fact, it appears to be not much better than random) and PLS methods

and the much better performance of the neural network approach.

We also attempted to improve the classification results by using the convex

pseudo-data method described by Breiman11 to increase the size of the training sets.

We considered two approaches. In the first method, we simply extended the whole

dataset without regard to class. The new samples were placed in the training set and

the extended training sets were used to build models. In the second approach we only

extended the portion of the training set that was assigned to the bad class (essentially

increasing the size of the bad class). Though the results in some cases (PLS and LDA)

did improve to some extent, the increases in classification rates did not appear to be

significant and hence we omit them in this study.

One way to consider the performance of the models is shown in Figs. 5.2, 5.3, and

5.4. The probability for membership in the good class is plotted against the residuals

from the original linear regression model. The probabilities were obtained from the neural

network classification models. Fig. 5.2 is the plot for the prediction set of the DIPPR

dataset. Ideally one would expect that such a graph would have a cluster of points in the

upper left quadrant and a cluster in the lower right quadrant. However, in practice such

a perfect distribution is rare, although the graph does indicate the general trends. In the

lower right there is a vertical set of points with probability 1.0 that exhibit low values of

the absolute standardized residual. On the left hand side of the graph, we see a similar

set of points with probability values equal to 0.0 (indicating that they belong to the bad

class). In between these two extremes we see points that have probabilities indicating

membership to the good class. However for points with probabilities lying in the range

0.5 to 0.7 such membership is probably not conclusive, and we see that their residuals

are also midway between the two extremes. The points at the left and right edges of the

graph indicate that when the class predictions of the CNN classifier are accompanied by

high or low probabilities, the residuals from the linear regression model can be expected

to be low or high, respectively. The two anomalous points marked by red triangles

represent the misclassified cases. The one on the right was predicted as belonging to
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the good class, whereas its true membership was to the bad class, and vice versa for

the point on the right. It is not apparent why these points would be misclassified. But

more importantly, it is not clear how one might consider them misclassified without

having the actual residuals available, since in a real application we would be dealing

with observations whose actual activities are not known.

Fig. 5.3 shows the corresponding plot for the Liu dataset. As before, observations

predicted to be in the bad class and the good class (with high certainty) are located in

the upper left and lower right quadrants respectively. In this case, there is only a single

point whose membership is not absolutely certain.

Finally, Fig. 5.4 shows the plot for the artemisinin dataset. In this case the plot is

not as tight as the previous ones, with the probability values of a number of observations

indicating that membership in the good class is not very conclusive. The misclassified

observations are interesting. The one misclassified point on the left hand edge would

certainly be difficult to detect in the absence of residuals. However, the remaining two

misclassified points are more or less on the border between the two lower quadrants. In

addition they are also quite close to points that have been correctly classified. This is

indicative of the fact that membership of observations when their probabilities lie around

0.5 can inconclusive and thus one should be wary of such points.

5.6 Further Work

The methodology described here appears to perform reasonably well on the three

datasets we investigated. However, there are several features that require further study.

First, the classification approach described here is a two-class problem. We restricted

ourselves to the two-class problem for simplicity. Considering the scheme as a three-

class problem might enable the user to draw more fine-grained conclusions regarding the

validity of the results obtained from a regression model. However, increasing the number

of classes will certainly require a large dataset and even if such a dataset is used, the

unbalanced nature of the classes will require careful selection of a classification technique.

We note that the results presented in this study are dependent on the nature of the

datasets employed – specifically the distribution of residuals which is itself dependent on

the distribution of the compounds in descriptor space. However, the datasets that we

selected for testing include both physical properties for a number of congeneric series as

well as biological properties for a set of molecules containing exhibiting varying structures

and functionality. Furthermore the datasets we selected allowed us to test our techniques



133

with different types of linear models. For example, the DIPPR dataset was described

by a linear model with very good statistics and very low residual values in general. On

the other hand, the artemisinin dataset was characterized by lower values of R2, high

RMSE value and a number of observations with large residuals. As a result the DIPPR

dataset presented our methodology with severely unbalanced classes whereas the class

distribution was not as skewed in the case of the arteminsin dataset. Furthermore it is

often the case that linear models for biological properties do not exhibit high quality

statistics and contain a number of outliers. Thus the use of this dataset allowed us to

test our technique in a real world scenario. Finally, the Liu dataset that was prepared

by hand allowed us to have specific observations with large residuals and thus test the

ability of the methodology to specifically detect these types of compounds. As has been

shown, our methodology appears to perform well on these varied datasets. The only

downside to the selection of our datasets is that the sizes are not as large as we would

have liked them to be. Larger datasets would allow us to experiment with more than two

classes as well as other classification schemes as discussed below. Clearly, one possible

avenue of investigation is the validation of our methodology on different (and larger)

datasets.

Modified sampling schemes like those described do not appear to improve the

results significantly. The initial assignment of classes to the training set data is a step

that could be modified, as the current approach employs an arbitrary assignment scheme.

To remove this user defined task, class assignments can be automated by the use of

regression diagnostics. However, such a scheme would then restrict the application of

this methodology to linear models only. It appears that for full generality some form of

cut-off value must be specified by the user. However, one advantage of a user- specified

cut-off value is that it allows the user to focus on a range of residual values. Coupled

with multiple (more than two) classes, this would allow the user to perform a fine-grained

analysis of the residual classes.

Of the classification techniques investigated in this study it appears that neural

networks performed the best with overall classification rates ranging from 79% to above

90% for the training set and 73% to 90% for the prediction set. The linear methods did

not appear to perform significantly better than random. Furthermore, introduction of

a similarity measure as an independent variable did not lead to improved classification

results using any of the methods.
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An alternative approach that may be considered is a Bayesian classification scheme

whereby the training set class assignments are used to build up a prior probability distri-

bution and the probability of new compounds belonging to a given class can be obtained

by sampling from the simulated distribution. Associated with each class prediction is a

probability for the membership to the predicted class. This requirement restricted our

choice of classification technique somewhat but we feel that the lack of such a posterior

probability would result in this method not being any more useful than simply recalculat-

ing the original regression model with some sort of scoring feature. The plots of posterior

probability versus residuals are a good indicator of the performance of this methodol-

ogy and also allows us to identify misclassifications in general. However, misclassified

examples that are associated with posterior probabilities around 0.5 are, in general, not

distinguishable from correctly predicted examples with similar posterior probabilities.

In such cases one would probably be justified in ignoring compounds whose class predic-

tions are borderline and rather concentrate on those compounds that are classified with

high posterior probabilities of belonging to the good or bad class.

5.7 Conclusions

This chapter describes a novel and general scheme to provide a measure of con-

fidence for the predictions from a regression model. The methodology described here

attempts to answer the following question: how well will a regression model predict the

property value for a compound that was not in the training or prediction set of the model?

That is, we have attempted to extend and unify the characterization of generalizability

for different types of QSAR models. Multiple approaches were investigated resulting in

a classification scheme in which the training set residuals were assigned to one of two

classes depending on whether they lay above or below a cut-off value. A classifier was

then built with these assignments and used to predict the class of the residual for a new

compound. The technique appears to be general enough to be applicable to any given

regression model. We investigated several classification techniques and a neural network

approach produced the best classification rates. The performance of the algorithm was

visualized by considering plots of posterior probabilities versus residuals.

Though the performance of regression models may be judged via other scoring

methods, such as confidence bands or frequency based scores, these methods are gen-

erally specific to the regression modeling technique employed. The method described

here is quite general and thus can be applied to regression models developed using linear



135

regression, neural networks or random forests. Furthermore, the methodology is not

dependent on the original dataset. All that is required is the availability of the origi-

nal residuals (which is generally available in models developed with common statistical

packages). Another attractive feature is that apart from the threshold residual value,

the methodology does not require extra information such as similarity measures or new

descriptors, since it restricts itself to using the descriptors that were used in the original

quantitative model. We believe that such a parsimonious approach minimizes complex-

ity as well as user intervention. The net result of our methodology is a probability of

whether a compound (with an unknown property value) will have a high or low resid-

ual (relative to a user specified cut-off value) when processed by the regression model.

Clearly, this does not replace the use of the original quantitative model. Rather, the

methodology allows us to generate confidence measures for new compounds for any type

of quantitative regression model in the absence of the original data and in a parsimonious

manner. As a result methodology could be used as a component of a high throughput

screening process in which different regression techniques are employed in a consensus

based strategy.
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Table 5.1: Molecules and experimental boiling point values

comprising the toy dataset selected by hand from Liu et al.5

and the literature

Name BP (K) Name BP(K)

methane -164.00 2,2,3-trimethylpentane 110.00

ethane -88.60 2,2,4-trimethylpentane 99.20

propane -42.10 2,3,3-trimethylpentane 114.70

butane -0.50 2,3,4-trimethylpentane 113.40

2-methylpropane -11.70 2-methyl-3-ethylpentane 115.60

pentane 36.10 3-methyl-3-ethylpentane 118.20

2-methylbutane 27.80 2,2,3,3-tetramethylbutane 106.50

2,2-dimethylpropane 9.50 nonane 150.77

hexane 69.00 2-methyloctane 142.80

2-methylpentane 60.30 3-methyloctane 143.80

3-methylpentane 63.30 4-methyloctane 142.40

2,2-dimethylbutane 49.70 2,2-dimethylheptane 132.70

2,3-dimethylbutane 58.00 2,3-dimethylheptane 140.50

heptane 98.40 2,4-dimethylheptane 133.50

2-methylhexane 90.00 2,5-dimethylheptane 136.00

3-methylhexane 92.00 2,6-dimethylheptane 135.20

2,2-dimethylpentane 79.20 3,3-dimethylheptane 137.30

2,3-dimethylpentane 89.80 3,4-dimethylheptane 140.10

2,4-dimethylpentane 80.50 3,5-dimethylheptane 136.00

3,3-dimethylpentane 86.10 4,4-dimethylheptane 135.20

3-ethylpentane 93.50 3-ethylheptane 143.00

2,2,3-trimethylbutane 80.90 4-ethylheptane 141.20

octane 125.70 benzenea 80.10

2-methylheptane 117.60 benzoic acida 249.00

3-methylheptane 118.00 cyclohexanea 80.70

4-methylheptane 117.70 decanea 174.10

2,2-dimethylhexane 106.80 bromomethanea 3.50

2,3-dimethylhexane 115.60 propylaminea 48.00

2,4-dimethylhexane 109.40 2,3,3-trimethylhexane 131.70
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Table 5.1: (continued)

Name BP (K) Name BP(K)

2,5-dimethylhexane 109.00 pyrrolea 130.00

3,3-dimethylhexane 112.00 anthracenea 340.00

acetic acida 117.90

a
Boiling point obtained from www.chemfinder.com

Table 5.2. Statistics for the linear regression model using the
artemisinin dataset.

Description β Std. Error t P VIF

Constant -60.5625 5.2834 -11.5 2× 10−16

N7CH -0.2148 0.0134 -16.1 2× 10−16 1.6

NSB-12 0.2238 0.0238 9.4 2× 10−16 1.3

WTPT-2 27.9391 2.6136 10.7 2× 10−16 1.4

MDE-14 0.1118 0.0247 4.5 1.18× 10−5 1.5

N7CH - number of 7th order chains;17–19 NSB-12 - number of single
bonds; WTPT-2 - the molecular ID number20 considering only
carbon atoms; MDE-14 - the molecular distance edge vector,5
considering only primary and quaternary atoms.
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Table 5.3. Statistics for the linear regression model using the DIPP
dataset.

Description β Std. Error t P VIF

Constant 179.15628 2.02828 88.329 < 2× 10−16

FPSA-3 -175.87824 2.88552 -60.952 < 2× 10−16 1.6

FNSA-3 1.36298 0.01395 97.675 < 2× 10−16 1.8

RNCG-1 -0.65982 0.11676 -5.651 4.70× 10−8 1.2

RPCS-1 -0.38502 0.07294 -5.279 3.00× 10−7 1.1

FPSA-3 - partial positive surface area divided by the total molecular
surface area;21 FNSA-3 - charge weighted partial surface area divided by
the total molecular surface area;21 RNCG-1 - the difference between the
relative negative charge and the most negative charge divided by the total
negative charge;21 RPCS-1 - the positive charge analog of RNCG-1
multiplied by the difference between relative positively charged surface
area and the most positively charged surface area.21

Table 5.4. Statistics for the linear regression model using the toy
dataset.

Description β Std. Error t P VIF

Constant -381.6960 60.3677 -6.323 8.72× 10−8

EMIN-1 -43.2189 9.1003 -4.749 1.95× 10−5 1.1

EMAX-1 88.8862 10.4446 8.510 4.46× 10−11 1.5

ECCN-1 1.2717 0.1052 12.089 4.99× 10−16 1.2

SHDW-6 501.1936 136.7371 3.665 6.27× 10−4 1.2

EMIN-1 - minimum atomic estate value;22 EMAX-2 - maximum atomic
estate value;22 ECCN-1 - eccentric connectivity index;23 SHDW-6 - the
area of the molecule when projected onto the XY plane24,25
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Table 5.5. Summary statistics for the three linear models used in this study

Training Set Prediction Set

Dataset R2 RMSE R2 RMSE F statistic p value

Artemisinin 0.70 0.87 0.05 0.75 95.28 (4,156) 2.2× 10−16

DIPP 0.99 7.22 0.99 7.42 9521 (4,230) 2.2× 10−16

Toy 0.90 18.84 0.01 352.30 111.9 (4,47) 2.2× 10−16

Table 5.6. Cutoff values used for each
dataset and the resultant size of each
class

Class Size

Dataset Cutoff Good Bad

artemisinin 1.0 133 46

DIPP 1.0 213 64

toy 1.0 44 21
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Table 5.7. Confusion matrices for the linear discriminant analysis of the
artemisinin dataset with and without atom pair similarity.

Training Set Prediction Set

AP similarity excluded

Predicted

Actual bad good

bad 2 40

good 2 117

Predicted

Actual bad good

bad 0 4

good 0 14

AP similarity included

Predicted

Actual bad good

bad 0 42

good 0 119

Predicted

Actual bad good

bad 0 4

good 0 14

Table 5.8. Confusion matrices for the linear discriminant analysis of the DIPP
dataset with and without average atom pair similarity .

Training Set Prediction Set

AP similarity excluded

Predicted

Actual bad good

bad 4 50

good 4 177

Predicted

Actual bad good

bad 1 9

good 1 31

AP similarity included

Predicted

Actual bad good

bad 4 50

good 4 177

Predicted

Actual bad good

bad 1 9

good 1 31
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Table 5.9. Confusion matrices for the linear discriminant analysis of the toy
dataset with and without average atom pair similarity .

Training Set Prediction Set

AP similarity excluded

Predicted

Actual bad good

bad 7 11

good 4 30

Predicted

Actual bad good

bad 2 1

good 3 7

AP similarity included

Predicted

Actual bad good

bad 4 14

good 4 30

Predicted

Actual bad good

bad 3 0

good 2 8

Table 5.10. Confusion matrices for the of the artemisinin dataset using a neural
network with and without atom pair similarity.*

Training Set Prediction Set

AP similarity excluded

Predicted

Actual bad good

bad 38 4

good 27 92

Predicted

Actual bad good

bad 4 0

good 3 11

AP similarity included

Predicted

Actual bad good

bad 34 8

good 46 73

Predicted

Actual bad good

bad 3 1

good 4 10
* The architecture for the CNN with atom pair similarity excluded was 4–9–1 and

with the similarity included was 5–5–1
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Table 5.11. Confusion matrices for the DIPP dataset using a neural network
with and without average atom pair similarity .*

Training Set Prediction Set

AP similarity excluded

Predicted

Actual bad good

bad 54 0

good 5 176

Predicted

Actual bad good

bad 9 1

good 1 31

AP similarity included

Predicted

Actual bad good

bad 54 0

good 5 176

Predicted

Actual bad good

bad 8 2

good 2 30
* The architecture for the CNN with atom pair similarity excluded was 4–5–1 and

with the similarity included was 5–4–1

Table 5.12. Confusion matrices for the toy dataset using a neural network and
without average atom pair similarity .*

Training Set Prediction Set

AP similarity excluded

Predicted

Actual bad good

bad 18 0

good 1 33

Predicted

Actual bad good

bad 3 0

good 2 8

AP similarity included

Predicted

Actual bad good

bad 17 1

good 2 32

Predicted

Actual bad good

bad 3 0

good 2 8
* The architecture for the CNN with atom pair similarity excluded was 4–5–1 and

with the similarity included was 5–5–1
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Table 5.13. Weighted success rates for the various classification
algorithms

Method Dataset Without Similarity With Similarity

TSET PSET TSET PSET

LDA Artemisinin 0.51 0.50 0.50 0.50

DIPP 0.52 0.53 0.52 0.53

Toy 0.63 0.68 0.55 0.90

PLS Artemisnin 0.51 0.46 0.49 0.5

DIPP 0.36 0.53 0.36 0.53

Toy 0.59 0.51 0.59 0.73

CNN Artemisinin 0.79 0.80 0.71 0.73

DIPP 0.98 0.93 0.98 0.86

Toy 0.98 0.90 0.94 0.90
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Fig. 5.1. Plots of absolute standardized residuals versus index of residual for the best
linear models developed using the training sets for each dataset, with the cutoff value
displayed. Residuals lying above the cutoff line are classfied as bad and those below as
good.
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Fig. 5.2. Plot of probability of membership to the good class versus the
absolute standardized residual for the DIPP dataset. The probabilities
were obtained from the CNN model. The prediction set portion was used
to generate the plot.
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Fig. 5.3. Plot of probability of membership to the good class versus the
absolute standardized residual for the toy dataset. The probabilities were
obtained from the CNN model. The prediction set portion was used to
generate the plot.
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Fig. 5.4. Plot of probability of membership to the good class versus the
absolute standardized residual for the artemisinin dataset. The probabil-
ities were obtained from the CNN model. The prediction set portion was
used to generate the plot.
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