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Chapter 4

Generation of QSAR Sets Using a Self-Organizing Map

4.1 Introduction

As mentioned in Chapter 2, self-organizing maps1 (SOM) are a class of unsu-

pervised neural networks whose characteristic feature is their ability to map nonlinear

relations in multi-dimensional datasets into easily visualizable two-dimensional grids of

neurons. SOM’s are also referred to as self-organized topological feature maps since the

basic function of a SOM is to display the topology of a dataset, that is, the relationships

between members of the set. SOM’s were first developed by Kohonen in the 1980’s, and

since then they have been used as pattern recognition and classification tools in various

fields including robotics,2 astronomy,3 and chemistry.

Neural networks, in general, have been used extensively in chemistry4 and chemo-

metrics and examples of applications in chemistry include spectroscopy,5–8 prediction of

NMR properties9 and prediction of reaction products10,11

SOM’s have also been applied to studies in the field of QSAR/QSPR.12 The

fundamental premise of QSAR studies is that structurally related (similar) compounds

will have similar properties. Determining similarity is a complex task, and many methods

exist such as principal components analysis and hierarchical cluster analysis. The fact

that a SOM is able to extract topological information from a dataset makes it a valuable

tool for detecting similarities in a dataset. Thus, it is to be expected that neighboring

neurons in a two-dimensional SOM grid will be similar to each other. If each neuron

in such a SOM grid can be assigned a molecule, groups of similar molecules can be

identified.

Many studies have used a SOM to perform the actual QSAR13–16 analysis by

detecting relationships between structures and activities of interest. Other applications

use SOM’s at different stages of the QSAR study, for example, the use of a SOM to choose

the best subset of molecular descriptors17,18 to perform a QSAR analysis. However,

another important step in QSAR study is the generation of training, cross-validation,

This work was published as Guha, R.; Serra, J.; Jurs, P.C., “Generation of QSAR Sets with a
Self-Organizing Map”, J. Mol. Model. Graph., 2004, 23, 1–14.
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and prediction sets. A number of methods exist, including random selection, activity-

ranked binning, and sphere exclusion algorithms.19 A number of studies have focused

on approaches to select the training set. These approaches include classical statistical

design methods such as Kennard-Stone,8,20 and D-Optimal8 as well as Kohonen neural

networks.8,20–22 Set selection is also an important step in QSAR modeling of chemical

libraries. Most strategies for this are based on a combination of principal components

analysis (PCA) for dimensionality reduction followed by statistical molecular design23–25

(SMD).

The goal of this study was to implement a set generation technique, utilizing

a SOM, together with whole molecule descriptors, to initially classify the dataset and

subsequently use this classification to generate training, cross-validation, and prediction

sets for QSAR studies, whose composition would mirror the overall composition of the

entire dataset. The expectation was, that this technique should lead to the generation of

QSAR models that exhibit equal or higher validity than models generated from subsets

developed with random selection or activity-ranked binning. The distribution of the

members of the training and prediction sets (with respect to each other in descriptor

space) was also studied by calculating a molecular diversity index.26 In addition, the

results from SOM generated QSAR sets were compared to results obtained using QSAR

sets created using traditional activity binning, as well as sets created using a sphere

exclusion algorithm described by Golbraikh.19

4.2 Implementation of an SOM

A Kohonen self-organizing map (SOM) is an unsupervised neural network that

uses as its inputs only the independent variables of the dataset here, molecular structure

descriptors. The theoretical details of the SOM can be found in Section 2.2.2.

The implementation for this study consisted of a 13x13 grid. A Gaussian kernel

was used, and the learning factor α was set to an initial value of 1.0 and was decremented

with a constant decrement of 0.1 per training iteration. The dataset we used to test this

method consisted of 333 molecules. According to Chen11 the grid should contain 333 to

999 neurons. This translates to grid sizes ranging from 18x18 up to 31x31. However, we

noted that for grids larger than 15x15 the SOM converged to a configuration in which the

training set was mapped relatively evenly over the grid with little apparent clustering. In

addition the use of larger grids increased the running times significantly. The method of

choosing a grid size does appear to be arbitrary. However, given the fact that following
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Chen’s rule of thumb produced grids with hardly any clustering observable, we felt that

examining smaller grid sizes was justified. Using a 13x13 grid of neurons the SOM

usually required 80 to 90 training iterations for the grid neurons to converge to their

final values. Depending on the number of descriptors used to represent each compound,

this took approximately 3 to 6 minutes on an AMD 750MHz Duron processor running

RedHat Linux 7.3.

After the SOM was trained, the results were analyzed to detect clusters of neurons.

In this context, a cluster refers to neurons that have similar Euclidean distances from

each other. As mentioned in Satoh,10 “recognition of boundaries of clusters in a Kohonen

network is a difficult task”. This was implemented by considering two neurons, having

a distance less than a user specified value, to be a part of the same cluster. Starting

with an arbitrary neuron, we assigned an arbitrary class label. Next, we considered

the distances to all the nearest neighbor neurons. Using the rule mentioned above, the

neighboring neurons were assigned classes; either the same class as the initial neuron or

the opposite class. This procedure was then repeated with all the neurons in the grid. An

example of the grid layout after cluster detection (using three different threshold values)

is shown in Fig. 4.1. The diagrams are based on the grid generated using the BCUT &

2D Autocorrelation descriptor combination, which are described in a subsequent section.

The final step in this procedure was to assign classes to the actual dataset members

by submitting each dataset vector to the trained grid. The class of the closest grid neuron

(in terms of Euclidean distance) was assigned to the dataset member.

The result of the cluster detection procedure was to divide the dataset into two

classes. Fig. 4.2 shows how the classified dataset is distributed over the SOM. As men-

tioned before, the arbitrariness of cluster detection lies in the fact that the user must

specify a distance threshold value. Too small a value or too large a value results in all

the dataset members being assigned to the same class. As the threshold value progresses

from zero to larger values the SOM generates a bulk class containing the majority of the

dataset members and a minor class. At one point, the populations of both classes will

be approximately equal, and then with further increase of the threshold value the pop-

ulations once again get skewed. It is thus clear that the threshold value must be chosen

carefully. Below we describe the method that we employed to arrive at a threshold value.

It should be noted that the classification of the dataset by the SOM is not intended

to correspond to a classification based on any structure-activity relationship. The aim

of the classification is to simply divide the dataset into two sets differing in structural

features, as characterized by whole molecule descriptors.
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4.3 Using the SOM to Create Sets

In this study, the SOM was used to generate training, prediction and cross-

validation sets (hereafter referred to collectively as QSAR sets) for QSAR studies using

the ADAPT27,28 methodology. Previously, these sets had been generated by randomly

selecting the requisite number of molecules from the binned (based on activity) dataset.

However, owing to the random selection process, the binning procedure does not necessar-

ily create sets that represent the composition of the whole dataset. Yan and Gasteiger22

used a SOM to select QSAR sets, in which sets were created by simple selection of grid

points. As a result thier method is similar to the sphere exclusion technique, in that

there is a correspondence between the training and prediction set points in descriptor

space. However the technique described by Yan and Gasteiger22 does not necessarily

maintain a correspondence between the composition of the QSAR sets and the overall

dataset. Our method emphasizes the use of characteristic features of the dataset to

create sets whose composition would mirror the overall dataset. This is achieved by

using the SOM to divide the dataset into two classes, based on the molecular structure

descriptors representing the compounds of the dataset. These two classes thus represent

the SOM classification of the whole dataset into a major and minor class (say, Class I

and Class II, respectively).

As described above, the threshold value controls the population of the two classes.

We initially ran the SOM with the threshold value set to zero. The output of this run

reported the distances between all the neurons in the grid. This distance information

was used to determine the range of threshold values to be considered in subsequent

runs of the SOM. The next step was to run the SOM several times in succession, with

threshold values ranging from about 5% to 90% of the maximum distance reported in

the initial run. Each run generated a set of class assignments. We considered those

runs that generated a bulk class having approximately 80% of the entire dataset. The

difference between the populations of the bulk and minor class for each of these runs, D,

was noted. A large jump in the value of D was usually seen at one point in the series.

This can be seen in Fig. 4.3, which plots D versus the threshold value (represented as a

percentage of the maximum distance in the grid when the threshold value is set to zero).

The descriptor subset supplied to these SOM runs was the MoRSE-WHIM subset. The

classification results from the run that generated the lower value of D for the jump were

used for the subsequent creation of QSAR sets. From Fig. 4.3 it is apparent that there

is a large jump from 23% to 24% as well from 4% to 5%. However, we did not consider
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these jumps since the number of molecules in the bulk class for these jumps was not

close to 80% of the whole dataset. Instead, the grid configuration that corresponds to

the jump from 9% to 11% had a bulk class that contained 80.1% of the whole dataset.

Thus the grid results from the run using a threshold value of 11% were used subsequently.

After the dataset had been classified, the information produced was used to create the

actual QSAR sets. At this point the SOM had classified the dataset into two classes

(Class I and Class II), members of each class being similar to each other but dissimilar

to members of the other class.

Now, for example, say that Class I contains 75% of the whole dataset and Class II

contains the other 25%. Our premise is that QSAR sets that contain Class I and Class II

molecules distributed according to their percentages in the overall dataset will be more

representative of the overall dataset and thus should lead to good predictive models.

Continuing with the example, let us assume that we have a dataset of 100 molecules and

the SOM classifier splits this dataset in to 75 molecules in class I and 25 molesules in

class II. We also assume that for the QSAR sets, the training set should contain 80%

of the dataset and the cross-validation and prediction sets should each contain 10%. To

make the training set composition similar to that of the overall dataset it will have 80

compounds, of which 75% (60 compounds) will be from class I and 25% (20 compounds)

will be from class II. Similarly the cross-validation and prediction sets will each have 10

compounds, of which 75% (8 compounds) will be from class I and 25% (2 compounds)

will be from class II. Due to rounding, the final QSAR sets may not have the exact

number of compounds described, but can differ by 1. The breakup of the QSAR sets

among the SOM classes discussed above is represented diagrammatically in Fig. 4.4 with

the exact numbers of compounds rounded appropriately.

Unlike methods such as the sphere exclusion method, discussed below, there is no

guarantee that the QSAR sets generated cover the entire descriptor space. Though it is

possible that a specific QSAR set is generated by sampling points from a small region of

the grid, while still covering both classes, it appears that this does not occur. Fig. 4.5

shows the distribution of the QSAR sets over the grid. As can be seen, the members

of each set seem to be relatively evenly distributed over the grid. The diagrams in

Fig. 4.5 are based on the BCUT & 2D-Autocorrelation descriptor combination. The

other QSAR sets generated from other Dragon29 descriptor combinations investigated

generated similar plots.
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4.4 Sphere Exclusion

This method, described by Golbraikh,19 uses the concept of molecular diversity26

coupled with a sphere exclusion algorithm to generate training and prediction sets which

satisfy the following criteria: points in the training and prediction sets should be close

(in terms of descriptor space) to each other, and the training set should be diverse, as

measured by the value of its diversity index.26

Golbraikh describes three types of sphere exclusion algorithms. A brief summary

of the general sphere exclusion algorithm follows. For a training set with N compounds

and described by K descriptors, the compound with the highest activity is first selected

and placed in the training set. Next, a radius, R, is calculated. R is given by the formula

R = c

(
V

N

)1/K

(4.1)

where V is the volume of the space occupied by the points of the dataset in the descrip-

tor space and c is a user defined constant termed the Dissimilarity Level (DL)26 and

essentially controls the number of molecules placed in the training and prediction sets.

To simplify calculations, the descriptor space is normalized using the formula

Xn
ij

=
Xij −Xj,min

Xj,max −Xj,min
(4.2)

where Xij is the non-normalized j’th descriptor for the i’th molecule and Xn
ij

is the

normalized value of the descriptor. Thus after normalization, V = 1 and the equation

for the radius simplifies to

R = c

(
1
N

)1/K

(4.3)

After a value of R is obtained, a sphere with this radius is centered at the point cho-

sen above, and all compounds that lie within this sphere (except the center point) are

included in the prediction set and removed from the dataset so as not to be considered

later. At this point if there are no more points left to consider the algorithm halts, other-

wise the distances from the remaining points to the centers of all the spheres considered

so far are calculated. The distance is given by

dij =

√√√√ K∑
a=1

(Xia −Xja)2 (4.4)



95

where Xi and Xj are the descriptor vectors for the i’th and j’th molecules respectively

and K is the number of descriptors. One of the points is chosen to be the center of the

next sphere and this process is repeated. The manner of choosing the next point gives

rise to 3 variations of the sphere exclusion algorithm: the point that had the smallest

dij , the point that had the largest dij , or randomly choosing a point. In this study we

implemented the first option. The result of this algorithm is to generate a training and

prediction set. Since the ADAPT methodology requires the use of a cross-validation set,

we randomly selected the required number of molecules out of the training set to create

the cross-validation set.

4.5 Descriptors for the SOM

The SOM requires that each compound be represented by a set of molecular struc-

ture descriptors. We used an external set of descriptors (from the Dragon29 program),

as opposed to the ADAPT descriptors since we wanted to classify the dataset in terms

of global features, rather than specific structural trends. As a result, various subsets

of Dragon descriptors which are holistic in nature were used, rather than ADAPT de-

scriptors, many of which concentrate on specific structural features. Another reason for

not using ADAPT descriptors is that the resultant QSAR sets would indirectly contain

the information generated by the ADAPT descriptors and thus using same descriptors

again during model development would lead to the possibility of biased models (in that

the same information that was used to arrange the molecules would be used again when

predicting their activity).

This technique, thus, proceeds in two stages and requires two sets of descriptors,

preferably orthogonal in nature. In the first stage, one set of descriptors is used to

classify the dataset with the SOM leading to creation of training, cross-validation and

prediction sets. The second stage involves the generation of the actual QSAR model using

the second set of ADAPT descriptors and the training, cross-validation and prediction

sets created in the first stage.

As mentioned above the, descriptors for the first stage were taken from the Dragon

program. Several combinations of the Dragon descriptors were selected to see if they

could provide a holistic description of the molecules. The number of descriptors in each

combination was reduced using correlation and identical testing before using them in

the SOM algorithm. A brief description of the descriptors used for the SOM clustering

follows. The size of each reduced Dragon descriptor set is shown in Table 4.1.
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The BCUT metrics30–32 are hybrid descriptors derived from the Burden param-

eters30 which originally combined the atomic number of an atom and the bond types

for adjacent and non-adjacent atoms. The BCUT metrics improve upon the number

and type of atomic features that can be encoded. This descriptor has shown significant

utility in the measurement of molecular diversity.33

Autocorrelation descriptors are based on the autocorrelation function defined34

as

ACl =
∫ b

a

f(x)f(x + l) dx (4.5)

where f(x) is a function of x, l is an interval of x and a and b are the limits of the

interval under consideration. f(x) is generally a time-dependent function or in the case

of molecular descriptors a spatially-dependent function, in which the atoms of a molecule

define the points in space and f(xi) represents some atomic property for the ith atom.

Both 2-D and 3-D autocorrelation descriptors can be calculated and for this study we

restricted ourselves to three types of 2-D autocorrelation descriptors - Moreau-Broto,35–37

Moran,38 and Geary.39 These descriptors sum products of atom properties of terminal

atoms of all paths of a specific path length.

The Galvez topological charge indices40–42 use the distance matrix to evaluate

charge terms which characterize the charge transfer between individual atoms in the

molecule.

The GETAWAY43–45 descriptors are based on the information contained within

the molecular influence matrix.44 They combine the geometrical information in the

influence matrix and topological information in the molecular graph weighted by various

atomic properties. As a result, there are two sets of GETAWAY descriptors, the H & R

GETAWAY, both of which we chose to use in the classification stage.

3D-MoRSE46,47 descriptors are fixed length representations of 3D molecular struc-

ture and are based on the algorithm used for the analysis of electron diffraction data.

Individual descriptors are obtained by considering different weighting functions as de-

scribed in the literature.

WHIM48–53 descriptors describe a molecule in terms of size, shape, symmetry and

atom distribution and are based on a principal components analysis on the centered

molecular coordinates with different weighting schemes.52

Our studies used both individual sets as well as combinations of the above de-

scriptors. The sphere exclusion method also used the same combinations of external

Dragon descriptors for the generation of the QSAR sets.
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4.6 Results and Discussion

To test this method we generated QSAR models using the 333-compound pcD-

HFR dataset that was studied by Mattioni.54 The structures and activity values for all

the molecules are contained in above-mentioned reference. To generate the QSAR sets we

fed combinations of Dragon descriptors to the SOM, and its output was used to generate

the sets. For each Dragon descriptor subset the sizes of the training, cross-validation and

prediction sets were the same. To ensure a large enough training set, 80% of the dataset

was placed in the training set and the remaining 20% was divided equally amongst the

CV and prediction sets. The actual number of molecules in each set is summarized in

Table 4.2 . After the QSAR sets were generated, we calculated ADAPT descriptors for

the entire dataset of 333 molecules. This generated 248 descriptors for each molecule.

The number of descriptors was then reduced via objective feature selection to generate a

reduced pool of 74 descriptors. The reduced pool of ADAPT descriptors was then used

with the QSAR sets created from each of the Dragon descriptor combination, to build

nonlinear computational neural network (CNN) models using the ADAPT methodology.

In total we used six combinations of Dragon descriptors to generate six nonlinear CNN

QSAR models (Table 4.1).

4.6.1 Nonlinear CNN Models

To generate nonlinear models, the descriptor subsets selected by a genetic algo-

rithm were fed to a 3-layer, fully-connected, feed-forward neural network to test fitness.

The best neural network models were those that minimized the cost function defined as

Cost = RMSETSET + 0.5× |RMSETSET − RMSECV SET |

where RMSETSET and RMSECV SET are the RMS errors for the training and cross

validation sets respectively. Futher details of the development of CNN models using a

genetic algorithm for model selection can be found in Section 3.4.2.

After several of the best (low cost) models were obtained a more rigorous analysis

was performed on each model to identify the optimal neural network parameters. The

results for the nonlinear models are summarized in Table 4.3. Though the number of

descriptors in the two best models (see Table 4.4) is significantly lower than the number

in the published model, they are of similar types, the majority being simple structural

counts and topological path descriptors.
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The MoRSE-2D Autocorrelation Dragon descriptor combination generated QSAR

sets which produced a CNN model whose prediction set RMSE value was slightly larger

than the original value whereas the prediction set error for the models that were generated

from QSAR sets produced by using the GETAWAY and the MoRSE-WHIM Dragon de-

scriptor sets match the predicted value. However, in all cases the RMSE’s for the training

and cross-validation set were significantly larger than those for the reported model. The

higher cross-validation set error could indicate a loss of generalizability in these models.

On the other hand the RMSE values for the training and cross-validation sets generated

from the MoRSE-GETAWAY combination are much closer to those reported, though

the prediction set error is now significantly larger. However, the attractive feature of

the models generated from QSAR sets produced by MoRSE-2D Autocorrelation, GET-

AWAY and MoRSE-WHIM Dragon descriptor sets are that they are 5- or 6-descriptor

models. Furthermore, the number of neurons in the hidden layers in these three models

are all less than in the published model, indicating a simpler neural network.

Table 4.4 lists the descriptors present in the two best nonlinear models. The two

best models have a similar set of ADAPT descriptors when compared to the published

model, though none of them include a geometric descriptor. The R2 values for the

two best models (i.e., the models using QSAR sets generated using the MoRSE-2D

Autocorrelation and MoRSE-WHIM Dragon descriptor combinations) are close to those

reported for the best model. These are summarized in Table 4.5. The R2 values for the

training and cross-validation sets produced by the MoRSE-WHIM combination compare

favorably to those published. The R2 value for prediction set produced by the MoRSE-

WHIM combination is a little higher than the reported value, but is not significantly

larger. Considering the fact that the R2 for the prediction set, produced by the MoRSE-

2D Autocorrelation combination, is the same as that published this could indicate that

a combination of MoRSE, 2D Autocorrelation and WHIM descriptor sets would lead to

QSAR sets which would lead to a CNN model with better correlation coefficients overall.

However, it should be noted that though the R2 value is a good test for evenly

distributed data, it is not always reliable for an unevenly distributed dataset as the one

used in this study. As a result we feel that the RMSE values provide a more reliable

indication of the fitness of a model.

The plot for the predicted versus experimental values for the model generated

using QSAR sets produced using the MoRSE-WHIM Dragon descriptor combination is

shown in Fig. 4.6. Molecules in the prediction set were classified as outliers if their

predicted value was two standard deviations away from the mean. This criterion led to
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one outlier, whose structure is shown in Fig. 4.7. The best, published model also classified

a single outlier. Ideally, we would like the same outliers to be detected by either method.

Although this is not the case, it should be noted that there is a structural similarity

in the outliers presented in Fig. 4.7. Although the original work does not provide an

explanation of why that outlier is not predicted well, the fact that the SOM based

technique predicts a structurally similar outlier indicates that that this technique is able

to take into account similarity features of the dataset in the creation of the QSAR sets.

An important feature of the two best CNN models (using QSAR sets generated

from the MoRSE-2D Autocorrelation and the MoRSE-WHIM Dragon descriptor combi-

nations) is the consistency between the RMSE’s for the training, cross-validation, and

prediction sets. In many cases a low RMSE for the prediction set would be indicative of

a good predictive model. However, at the same time, if the RMSE for the training and

cross-validation sets are much lower than that of the prediction set it could indicate that

the model lacks generalizability. Thus one would strive for models that have similar or

consistent RMSE values for all the three QSAR sets. As can be seen, this does not occur

for the original published results. However, for the best CNN models generated by the

SOM-based method, though the RMSE’s for the training and cross-validation sets are

higher than those reported in the original model, the RMSE’s are more consistent over

all the three sets. The standard deviation of the RMSE’s for the three QSAR sets in

the original model is 0.11 whereas the standard deviations in the case of the two best

models noted above are 0.02 in both cases. This suggests that the models generated by

this method have both sufficient generalizability as well as predictive ability. However,

apart from the conclusions regarding the nature of the models themselves, these results

are indicative of the fact that the QSAR sets that are generated by the SOM are indeed

similar to each other and representative of the data set as a whole thus leading to similar

predictions made during training and after training (using the external prediction set).

We also reran the original, published 10–6–1 CNN model five times with different

QSAR sets generated using activity binning. The results obtained are summarized in

Table 4.6. As can be seen there is a large variation in the RMSE’s for the three QSAR

sets in each run. Furthermore, when compared to the RMSE’s for the best CNN models

generated using QSAR sets created by the SOM, we see that the SOM results in general

lie midway between the RMSE values from the 10–6–1 models using QSAR sets from

activity binning. We believe that this is a good indication for the consistency of results

obtained using the SOM to generate representative QSAR sets.
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It thus appears that the technique of using a group of external descriptors coupled

with a SOM to generate sets for QSAR modeling do generate improved results. The

ability of the SOM to detect similarities in the dataset allows us to generate sets that

are more representative of the overall data set. As a result models with fewer parameters

(i.e., descriptors) are able to produce results comparable to the original model that had

nearly twice the number of parameters and in addition produce consistent RMSE’s over

the three QSAR sets.

4.6.2 Sphere Exclusion

For comparison, results of CNN models generated using different QSAR sets cre-

ated by the sphere exclusion method are presented in Table 4.7. For each set of external

descriptors used, the model with lowest cost is reported. None of the models seem to

be significantly better than the published model. The architectures are not significantly

simpler than the reported 10–6–1 architecture and the R2 values and RMSE’s are com-

parable, though none of the models seem to provide an improvement over the published

statistics. In addition, there is not much of a difference in the RMSE values for models

that are generated from QSAR sets that were created using different Dragon descriptor

combinations. However, when comparing the results from the sphere exclusion method to

those obtained from the SOM technique it appears that the SOM generated QSAR sets

produce better models in terms of size (i.e., requiring fewer descriptors), with RMSE’s

being comparable. In addition the RMSE’s for the three QSAR sets in the models gener-

ated by the sphere exclusion method do not show much consistency. The RMSE for the

prediction set is usually higher than the RMSE’s for the training and cross-validations

sets by 0.1 to 0.3. This is similar to the nature of the RMSE’s in the original model.

Due to the nature of the sphere exclusion algorithm one would expect that the resultant

QSAR sets would be similar to each other and thus lead to consistent RMSE’s. The fact

that it does not, is a possible indication that a simple Euclidean distance between indi-

vidual molecular descriptor vectors is not sufficient to characterize similarity of molecules

of in a dataset. Thus the sphere exclusion method does not appear to generate QSAR

sets that can produce models with both generalizability as well as predictive ability for

this dataset.
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4.6.3 Randomization Studies

The best nonlinear model (i.e., the one generated using QSAR sets produced

by the MoRSE-WHIM Dragon descriptor combination) was subjected to randomization

tests. The first set of tests involved generating random training, cross-validation and

prediction sets. These sets were then used to generate a nonlinear model with a 6–5–

1 CNN architecture five times (each time using randomly generated sets) and noting

the average RMSE’s. In addition, the variance between the five individual runs for the

random sets was also compared to the variance for five runs of the original QSAR sets

that gave the best 6-descriptor CNN model. The correlation coefficient for each of the

sets in each of the runs was also compared to the correlation coefficients for the best

model. The results are summarized in Table 4.8. The average correlation coefficient

(R2) for the random training, cross-validation and prediction sets were 0.75, 0.73, and

0.56 respectively. These values would indicate that the KSOM technique is not much

better than random set generation. As mentioned above, R2 is not always reliable for an

unevenly distributed dataset such as the one used in this study and as a result we feel

that the RMSE values provide a better indicator of the goodness of a model. Though

the RMSE’s for the training and cross-validation sets are comparable, the prediction

set RMSE is much larger for the random sets. In addition, comparing the standard

deviation in the RMSE values for the five runs for the random and KSOM sets indicates

that the KSOM technique is more consistent compared to the random approach. For

the original best model the standard deviations for the three sets were 0.005, 0.01 and

0.02, respectively. For the random sets the standard deviations were 0.02, 0.03 and 0.13

respectively, indicating that predictions made using the random sets were not consistent

over several runs. Once again, we believe that this is evidence for the KSOM’s ability

to generate good sets based on features of the dataset.

The next randomization test consisted of regenerating the best nonlinear model

(using the ADAPT descriptors as reported in Table 4.4) but scrambling the dependent

variable. With the scrambled dependent variable, the best CNN model was regenerated

using the original QSAR sets. This process was repeated five times, each time scrambling

the dependent variable and the average RMSE and R2 values for the training, cross-

validation and prediction sets for the five runs were noted. It would be expected that

the resultant model would have relatively high RMSE’s for the three sets, as well as low

R2 values. This was indeed the case with the training, cross-validation and prediction

sets having RMSE values of 1.04, 1.00 and 0.97 respectively (Table 4.9). In addition



102

the R2 values for the three sets were 0.17, 0.09 and 0.01, respectively. Compared to the

RMSE and R2 values for the best model, it appears that chance correlations played little

(if any) part in the results for the best model.

Finally a randomization test was carried out to investigate the role of chance

correlations in the genetic algorithm (i.e., the descriptor selection algorithm). This was

carried out by generating one hundred CNN models using a 6–5–1 architecture and

the QSAR sets generated by the SOM (using the MoRSE-WHIM Dragon descriptor

subset). However in each run, six ADAPT descriptors were randomly selected from

the reduced pool. One would assume that the RMSE and R2 values for the models

generated by randomly selecting descriptors would be worse than for the best reported

model but not as poor compared to the runs using a scrambled dependent variable. This

can be explained by noting that since the dependent variable is not scrambled there

will be some correlation with the descriptors selected. However due to the fact that

we randomly select descriptors this correlation will not be as significant compared to

descriptor selection using a genetic algorithm, which looks for descriptor subsets that

are well correlated with the dependent variable and hence produce models with low cost

functions. Thus this test ensures that the specific set of descriptors selected by the

genetic algorithm did not arise by chance alone. The results for this test are provided in

Table 4.10. As can be seen, the average RMSE for all three sets are higher than those

reported for the best model, though the differences are not as significant compared to

the results from the scrambled dependent variable test. The R2 values are also lower

than for the best reported model but are not as poor when compared to the results from

the scrambled dependent variable test.

The results from the randomization tests described above thus indicate that

chance correlations played little (if any) role in both the descriptor selection algorithm

as well in the final model itself.

4.7 Diversity Indices and SOM Generated Sets

The SOM was used to prepare training and prediction sets such that they would

be heterogeneous in nature and representative of the whole dataset. The molecular

dataset diversity index26 has been developed to quantify the diversity of a dataset and the

correspondence between training and prediction sets. This metric provides a quantitative

estimate of the similarity between the training and prediction sets. Golbraikh describes

three quantities - M(test, train) , M(train,test) and Itrain. The quantity of interest here is
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M(test,train), which measures the diversity of the training set with respect to the prediction

set. The value of M(test,train) depends on both the algorithm used to generate sets as

well as the distribution of the data set in the descriptor space. In general lower values of

M(test,train) indicate that the points in the prediction set are closer (or correspond better)

to the points in the training set. However the evaluation of M(test, train) depends on the

value of an arbitrary value termed the Dissimilarity Level (DL). Golbraikh does not go

into detail regarding the choice of a dissimilarity level. Hence, we calculated M(test, train)

values at increasing DL values for each Dragon descriptor combination, plotted them

(Fig. 4.8), and correlated the behavior of the plots with the CNN model statistics. One

would expect that for training and prediction sets which correspond well with each

other (i.e., a prediction set point corresponds to some training set point) the M(test,train)

should rapidly fall to zero with increasing DL values. However, another view would be

to consider the training and prediction sets to be well distributed throughout descriptor

space of the dataset. In such a case the correspondence between the two sets would not

necessarily be very good and one would observe higher values of M(test,train) for a given

DL value. This might lead one to conclude that such a situation would lead to bad

model statistics. However, Fig. 4.8 indicates otherwise. From the plot we see that the

curves for the MoRSE-2D Autocorrelation and the MoRSE-WHIM combinations remain

constant at an M(test,train) value of 1 for all DL values up to approximately 2 and the

MoRSE-GETAWAY combination remains at 1 up to nearly 2.5. From Table 4.3 we see

that the MoRSE-GETAWAY combination has the best training and cross-validation set

errors of all the sets tested, but its prediction set error is higher. At the same time, the

training and prediction set errors for the MoRSE-WHIM and MoRSE-2D Autocorrelation

combinations are larger than for the MoRSE-GETAWAY combination - but their order

follows the trend in the graph. Sets that remain at a M(train,test) value of 1 for higher

DL values appear to lead to lower RMSE’s for the training and cross-validation sets.

If one considers the prediction set errors, a similar trend is seen. Sets whose

M(test,train) vs. DL plots remain at a M(test,train) value of 1 for larger values of DL

appear to lead to better prediction set errors. However this should not be considered

as an absolute as the plot for the GETAWAY set does not follow this trend. In fact

the prediction set error is equal to that for the MoRSE-WHIM set., but the M(train,test)

value drops below 1 for DL values of 0.7 onwards. Thus the values of M(test,train) for

the GETAWAY set are lower for a given DL value, indicating a better correspondence

between the training and prediction sets. However, though this leads to a good prediction

set error, the training and cross-validation set errors are quite large. This could imply
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that lower M(test,train) values might lead to better prediction set errors but at the same

time would lead to a loss of generalizability as evidenced by the training and cross-

validation set errors.

Though the use of an arbitrary DL value in the evaluation of M(test,train) values

does make interpretation of M(test,train) values slightly ambiguous, we feel that the tech-

nique we describe does provide some indication as to whether a training set might lead

to good training and prediction set errors, based on diversity index information.

4.8 Conclusions

This study used a Kohonen self-organizing map to investigate whether a similarity

based set generation method would lead to better QSAR models. Multiple runs using

different sets of Dragon descriptors were used to generate training, cross-validation,

and prediction sets, which were in turn used to create QSAR models. The best model

obtained by this method did improve upon the previously published model in terms of

model size. Although the actual RMSE values were not significantly better than those

published, they were consistent and exhibited a lower standard deviation over the three

QSAR sets compared to the original results. QSAR sets were also generated using a

sphere exclusion19 technique. Models generated using these QSAR sets did not show any

significant improvement in terms of statistics or model size over the published results.

When compared to the models generated using QSAR sets created by the SOM, we

noted that there was no significant improvement in the statistics of the models generated

by the sphere exclusion methods. Furthermore, the RMSE’s of the three QSAR sets

generated by the sphere exclusion method were not as consistent as those generated

by the SOM and exhibited standard deviations similar to those of the original QSAR

sets obtained by activity binning. However, the SOM did lead to models that were

significantly simpler than those generated using the sphere exclusion method or activity

binning (the published results). Randomization tests indicated that the models generated

did not arise due to chance correlations. The use of the M(test,train) diversity index

provided an indication of the Dragon descriptor set’s ability to generate good QSAR

sets which in turn lead to QSAR models.

Though the study did lead to a better model than that published, it involved a

number of arbitrary decisions such as the choice of initial descriptors to submit to the

SOM as well as choosing a specific SOM split out of several runs. The algorithm could

be substantially improved by implementing a method to optimize the threshold value so
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that classification of molecules in the SOM could be automated. Another improvement

would be in the choice of initial descriptors. Since this study was exploratory in nature,

we restricted ourselves to certain subsets of Dragon descriptors which we deemed to be

holistic in nature. That is, we chose Dragon descriptor sets that appeared to characterize

the whole molecule, rather than characterizing specific molecular features. In addition

the choice of Dragon descriptors was also guided by the fact that we did not want to use

ADAPT descriptors during the initial classification process. Clearly, there remains an

element of arbitrariness in the selection of Dragon descriptor sets. This need not be the

case and by including more or even all Dragon descriptors (followed by a PCA to obtain

the main contributing components) the initial classification might be better. In addition

though the evaluation of M(test,train) does involve an arbitrary constant, it seems that

looking at the trend rather than individual values (for fixed DL values) can be used to

make a decision on which Dragon sets could be used for further study.
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Table 4.1. Type and number of Dragon descriptors used by the SOM to
generate training, cross-validation, and prediction sets for QSAR models.

Descriptor Name No. of Descriptors References

BCUT 123 30–32

BCUT & Galvez Topological Indices 63 30–32,40–42

GETAWAY 128 43–45

MoRSE & 2D Auto Correlation 173 35–39,46,47

MoRSE & GETAWAY 223 43–47

MoRSE & WHIM 139 46–53

Table 4.2. Summary of the number of molecules present in the train-
ing, cross-validation and prediction sets. The sizes of these sets were
the same for all the Dragon descriptor subsets investigated.

Set Number of Molecules Percentage of Molecules

Training 267 80.1

Cross-Validation 32 9.6

Prediction 34 10.3

Total 333 100
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Table 4.3. Summary of the nonlinear CNN models using training, cross-validation, and
prediction sets created by the SOM and Dragon descriptor combinations.

RMSE R2

Dragon Descriptor CNN Arch. TSET CVSET PSET TSET CVSET PSET

BCUT - 2D

Autocorrelation

5–3–1 0.63 0.68 0.79 0.68 0.60 0.67

BCUT - Galvez

Topological Indices

5–3–1 0.62 0.62 0.71 0.69 0.66 0.64

GETAWAY 5–2–1 0.68 0.60 0.73 0.64 0.76 0.67

MoRSE - 2D

Autocorrelation

5–3–1 0.63 0.63 0.68 0.68 0.60 0.74

MoRSE

-GETAWAY

9–5–1 0.49 0.59 0.76 0.80 0.58 0.80

MoRSE - WHIM 6–5–1 0.60 0.61 0.65 0.75 0.78 0.64

Published Results54 10–6–1 0.45 0.49 0.66 0.84 0.78 0.64
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Table 4.4. ADAPT descriptors present in the two best nonlinear
CNN models.

MoRSE & 2D Autocorrelation MoRSE & WHIM

Descriptor Type Range Descriptor Type Range

N7CH Topo 7.0 - 28.0 V6P7 Topo 2.1 - 0.5

MOLC-8 Topo 0.6 - 2.8 WTPT-4 Topo 0.0 - 12.2

NDB-13 Topo 0.0 - 7.0 N7CH Topo 7.0 - 28.0

NAB-15 Topo 6.0 - 23.0 NDB-13 Topo 0.0 - 7.0

WPSA-3 Hybrid 17 - 57.4 MDE-23 Topo 0.0 - 28.1

RPCS Hybrid 0.0 - 8.1

Topo indicates a topological descriptor. N7CH, number of seventh order
chains index;55–57 MOLC-8, average distance sum connectivity58,59

(topological index J); NDB-13, number of double bonds; NAB-15,
number of aromatic bonds; WPSA-3, partial positive surface area
multiplied by the total molecular surface area divided by 1000;60 RPCS,
relative positive charged surface area;60 MDE-23, molecular distance
edge between primary and secondary carbons;61 WTPT-4, sum of atom
ID’s for oxygens62

Table 4.5. Comparison of R2 values for the training, cross-validation, and prediction
sets created by the SOM using Dragon descriptors.*

Training Set Cross-validation Set Prediction Set

MoRSE - 2D Autocorrelation 0.68 0.60 0.64

MoRSE - WHIM 0.75 0.78 0.67

Published54 0.83 0.78 0.64
* The models produced were CNN models. See Table 4.3 for the model architectures.
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Table 4.6. A summary of the RMSE’s for the 10–6–1 nonlinear
CNN models using five QSAR sets generated by activity binning.

Serial No. Training Set Cross-validation Set Prediction Set

1 0.45 0.59 0.81

2 0.45 0.52 0.73

3 0.44 0.63 0.95

4 0.64 0.64 1.00

5 0.67 0.61 0.95

Table 4.7. Summary of the best nonlinear CNN models generated from QSAR sets created
using the sphere exclusion algorithm.

RMSE R2

Dragon Descriptor* CNN Arch. TSET CVSET PSET TSET CVSET PSET

BCUT - 2D

Autocorrelation

9–3–1 0.55 0.54 0.87 0.74 0.78 0.33

BCUT - Galvez

Topological Indices

9–8–1 0.46 0.50 0.87 0.83 0.81 0.36

GETAWAY 8–5–1 0.56 0.56 0.63 0.75 0.80 0.67

MoRSE - 2D

Autocorrelation

9–8–1 0.49 0.53 0.68 0.81 0.82 0.68

MoRSE -

GETAWAY

8–6–1 0.52 0.58 0.64 0.79 0.84 0.67

MoRSE - WHIM 7–6–1 0.50 0.57 0.82 0.80 0.77 0.52

Published Results54 10–6–1 0.45 0.49 0.66 0.84 0.78 0.64
* The external descriptor set used by the sphere exclusion algorithm to create the training and

prediction sets
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Table 4.8. Comparison of statistics for training, cross-validation, and prediction
sets generated randomly versus sets created by the SOM using the MoRSE-WHIM
Dragon descriptor combination.*

Random Sets MoRSE - WHIM Sets

Mean RMSE Std. dev. Mean R2 Mean RMSE Std. dev R2

TSET 0.57 0.02 0.75 0.58 0.005 0.74

CVSET 0.59 0.03 0.73 0.57 0.010 0.76

PSET 0.80 0.13 0.56 0.63 0.020 0.63
* The statistics are from a nonlinear CNN model using a 6–5–1 architecture. The same

descriptors were used in both models.

Table 4.9. RMSE values for a nonlinear CNN Model* us-
ing a scrambled dependent variable using training, cross-
validation, and predictions sets created by the KSOM using
the MoRSE-WHIM Dragon descriptor combination.

Scrambled Original

Mean RMSE Mean R2 Mean RMSE R2

TSET 1.04 0.17 0.58 0.74

CVSET 1.00 0.09 0.56 0.76

PSET 0.97 0.01 0.59 0.63
* The model was generated using a 6–5–1 CNN architecture

and the ADAPT descriptors reported for the best nonlinear
model.
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Table 4.10. A summary of the RMS errors and R2 values for one hundred
runs of the best CNN architecture (6–5–1) using randomly selected ADAPT
descriptors.*

Mean RMSE Std. Dev. Mean R2 Std. Dev.

Training Set 0.81 0.09 0.47 0.11

Cross-Validation Set 0.84 0.08 0.36 0.13

Prediction Set 0.84 0.09 0.28 0.13
* QSAR sets used in these models were created by the KSOM using the

MoRSE-WHIM Dragon descriptor combination.
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A B C

Fig. 4.1. A graphical representation of the SOM after the cluster detec-
tion step using the BCUT & 2D-Autocorrelation Dragon29 descriptor subset.
Black and white squares represent the individual classes. Grids A, B and C
were obtained by setting the threshold value to 0, 1.2 and 3.6 respectively.
Grid B was used to generate the final QSAR sets for this Dragon descriptor
subset.

Fig. 4.2. A graphical representation of the dis-
tribution of whole dataset on the grid after it has
been divided into two classes based on the BCUT
& 2D-Autocorrelation Dragon29 descriptor combi-
nation. Black and white squares represent the two
different classes.
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Fig. 4.3. A plot showing the variation of D (the difference in size between major and minor
SOM classes) versus the threshold value for the SOM. In this plot the threshold value is
represented as a percentage of the maximum distance in the grid for a SOM in which the
threshold value was set to 0. The descriptor set used to generate the grids described in the
plot was the MoRSE-WHIM Dragon29 descriptor subset.
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Fig. 4.4. A diagrammatic representation of the method we use to generate QSAR sets from
the SOM classification of the whole dataset. The numbers within circles are the number of
molecules from that class that present in the specific QSAR set.
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Training Set Cross Validation Set Prediction Set

Fig. 4.5. The three diagrams represent the distribution of the QSAR sets
over the surface of the SOM. The grid was trained with the BCUT & 2D-
Autocorrelation Dragon29 descriptor combination.
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Fig. 4.6. Plot of experimental vs. predicted log IC50 for the 6–5–1 CNN model Generated
Using Training, Cross-validation, and Prediction Sets Created Using the SOM and MoRSE
- WHIM Dragon29 Descriptor Combination.
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Outlier detected by best CNN model

in this study

Published outlier for the best

pcDHFR model54

Fig. 4.7. Prediction set outliers.

Fig. 4.8. Plot of dissimilarity level vs. M(test,train) for the various Dragon29 sets studied.
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