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Chapter 3

QSAR Methodology and ADAPT

The previous chapter described a number of modeling techniques with which

QSAR models can be built. Based on the nature of the method used, QSAR models

are classified as linear or nonlinear. However, the modeling process does not simply

consist of passing data through an algorithm. As described in Chapter 1, the fact that

we cannot directly calculate physical properties or biological activities requires us to take

an indirect route. As a result, QSAR modeling is a stepwise process consisting of five

main steps:

1. Structure entry and optimization

2. Descriptor calculations

3. Objective and subjective feature selection

4. Model development

5. Prediction

This is a very broad overview and certain steps, such as set generation and interpreta-

tion have been skipped over, though these will be discussed in more detail in subsequent

chapters. Another important step in the QSAR model development process is the consid-

eration of the validity of models. This aspect has many facets and one of them involves

deciding as to whether a model will be applicable to a set of unseen query compounds.

This topic is discussed in more detail in Chapter 5.

The utility of a QSAR model depends on its intended future use. If a model is to

be used as a screen in a high throughput pipeline, the predictive ability of the model is

paramount. In these cases the high predictive ability of CNN’s and random forests make

models based on these methods attractive. If a QSAR model is to be used as a guide to

possible modifications of molecules to improve their activities, the interpretability of the

model assumes a major role. In this case the simple PLS interpretation scheme that can

be applied to linear models make them good candidates for QSAR modeling inspite of

their lower predictive performance for biological properties. Chapters 8 and 9 describe
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two approaches to providing interpretations for CNN models. As a result, one gets the

best of both worlds - high predictive ability and a measure of interpretability.

This chapter discusses in detail the various steps in the model development process

and is oriented towards the use of the ADAPT1,2 software package for 2-D QSAR model

development and testing.

3.1 Structure Entry and Optimization

The model building process using ADAPT begins with the creation of a work area

which initializes the various files and related storage requirements for a QSAR study. The

molecules to be used in the study can be available as 2-D or 3-D structures. In general,

the data are in the former format and as a result, 3-D structures are required. 3-D

structures are usually generated using Hyperchem. The resultant structures are crudely

optimized using a molecular mechanics method within Hyperchem. Once the dataset

has been converted to 3-D structures, they are rigorously optimized with Mopac 7.01.

This program employs a semi-empirical method using the PM33,4 Hamiltonian. This

Hamiltonian is reported to be well suited to the purpose of geometry optimization. Since

some molecular descriptors also require information about the electronic environment of

the molecule, the molecules are also optimized for electronic properties. In this case the

AM15–7 Hamiltonian is used. Once the molecules have been optimized for geometry and

electronics, they are stored in the ADAPT work area.

3.2 Molecular Descriptor Calculations

As mentioned before, the fundamental assumption of QSAR modeling is that

molecular structure can be correlated to physical or biological properties. Thus the fun-

damental requirement is some method to encode various structural features in a molecule.

Molecular descriptors fulfill this requirement. Descriptors are (in general) numerical rep-

resentations of specific molecular features. Such features can range from very simple ones

such as the number of carbons or number of halogen atoms to more complex and abstract

features such as graph invariants of the molecular graph or the information content of a

molecule as characterized by entropy. Several packages are available to calculate a wide

variety of descriptors. Examples include Dragon,8 JOELib9 and ADAPT. Owing to the

large variety of descriptors that can be calculated we restrict ourselves to a discussion of

the main types of descriptors that are calculated by ADAPT and refer the reader to the

literature10 for additional information. The descriptors calculated by ADAPT can be
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classified into four types: geometrical, topological, electronic and hybrid. The following

sections describe the nature of each descriptor class in detail.

3.2.1 Geometric Descriptors

Geometric descriptors characterize the shape and extent of the molecule in terms

of its 3-D coordinates. As a result accurate coordinates are required and so the structure

must be geometry optimized before these descriptors can be calculated. Examples include

moment of inertia,11 molecular surface area and volumes,12 and shadow descriptors.13,14

The surface area and volume descriptors are usually used in combination with atomic

properties (such as partial charges or hydrophobicities) and are useful in characterizing

the distribution of these properties. The shadow area descriptors align the first two

moments of inertia of the molecule along the X and Y axes and then calculate the

area of the projection of the molecule on the XY, XZ and YZ planes. In general these

types of descriptors capture features related to molecular size and shape and thus are

generally physically interpretable. The drawback to these descriptors is that they require

accurate molecular geometries and thus for large sets of molecules the optimization

step can become time consuming. Furthermore, the ADAPT implementation of these

descriptors do not take conformational features into account and work with the lowest

energy conformer. Situations where conformation details play an important role (such

as ligand binding) will not be accurately characterized by these descriptors.

3.2.2 Topological

As the name suggests, topological descriptors consider the topology of a molecule.

That is, in the most general case, only the connections between the atoms in a hydro-

gen suppressed molecule, effectively converting it into a mathematical graph. Certain

topological descriptors consider the type or certain properties of atoms involved in the

connections as weights. Topological descriptors characterize features such as path lengths

and connectivity. Examples include connectivity indices,15–17 distance edge vectors18 and

eccentricity indices.19 Since topological descriptors consider the molecule as a mathe-

matical graph, a number of these descriptors are simply various graph invariants or other

functions of the molecular graph. Examples include eigenvalues of the adjacency matrix

and descriptors based on the molecular influence matrix20 etc. However, there are other
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descriptors that consider features such as paths and vertex degrees. Topological descrip-

tors are able to provide a more detailed description of molecular shape features such as

branching and crowdedness.

As an example consider the calculation of some connectivity indices. These were

first described by Randic21 and later extended by Kier and Hall15 with the assumption

that

there resides in the structural formula sufficient information so that an index,

based upon non-empirical counts of atoms, can be calculated

Numerous connectivity indices have been defined. A well-studied example is the χ in-

dex. These indices consider the vertex degree of each atom in various subgraphs of the

molecular graph. Thus the 1χ index is defined as

1χ =
∑
i6=j

1√
δiδj

(3.1)

where δi and δj are the vertex degrees of two bonded atoms, i and j. However, the
1χ descriptor is simplistic since it only considers atoms connected by a single bond. To

characterize a molecular structure on a larger scale, extended versions of the χ descriptor

were defined. Thus the second order connectivity index, 2χ, is computed by dissecting16

a structure into 2-bond (i.e., 3 atoms) fragments. The value of the descriptor is then

calculated by
2χ =

∑
i6=j 6=k

1√
δiδjδk

(3.2)

where δi, δj and δk are the vertex degrees of the atoms in a given fragment. Higher

order χ indices can be calculated in a similar manner. An important feature of these

descriptors is that they restrict themselves to linear paths. However, structures exhibit

branching and cyclic paths and the connectivity indices were extended to take these

features into account, resulting in the mχf descriptors where m denotes the number of

edges in a fragment and f denotes the type of fragment that may be p (path), c (cluster),

pc (path–cluster) or ch (chain). The structures of these fragments are summarized in

Fig. 3.1.

It should be noted that the original definition only considered saturated carbon

atoms. To take into account unsaturation and heteroatoms the δ value for an atom was

modified such that

δv = Zv − h (3.3)
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where Zv is the number of valence electrons and h is the number of hydrogens. Eq. 3.3

was also extended to take into account core electrons for higher row elements. The use

of the δv values lead to the calculation of the valence corrected χ indices denoted by
mχv

f
, where m and f have been previously defined.

Fig. 3.2 shows an example of how a molecular structure is decomposed into a

variety of fragments. The original molecule (1-methyl 3-ethyl benzene) is decomposed

into a 6th order chain (top), two 3rd order clusters (right) and three 4th order path–

clusters (bottom). The numbers in the central structure correspond to the vertex degree

for each atom. Thus the value of 6χch would be obtained by

6χch = 1 · 1√
2× 2× 2× 2× 2× 2

= 0.125

Similarly the fourth order path–cluster χ index, 4χpc would be calculated as

4χpc = 3 · 1√
(1× 3× 2× 2× 2)

= 0.612

Finally the value of the third order cluster χ index, 3χc would be calculated as

3χc = 2 · 1√
(1× 3× 2× 2)

= 0.576

Another type of topological descriptors are the BCUT’s developed by Pearlman

et al.22 These descriptors are based on the Burden matrix23 which is an adjacency matrix

in which the non-diagonal elements are weighted based on the nature of the connectivity

of the atoms involved. Thus for a molecule with n atoms and an n×n adjacency matrix,

A, the Burden matrix, B is defined as

Bij =


π × 0.1 if i 6= j and Aij = 1

0.001 if i 6= j and Aij = 0

Z if i = j

where π represents the conventional bond order and Z represents the atomic number.

Furthermore, all off-diagonal elements of B are augmented by 0.01.
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The fundamental modification made by Pearlman was to place atomic properties

along the diagonal of the Burden matrix. This leads to a variety of weighted Burden

matrices where the weights include atomic weight, polarizability, electronegativity and

hydrogen bonding ability. The actual descriptors are obtained by performing an eigen-

value decomposition of the Burden matrix and taking the lowest and highest eigenvalues.

It has been shown that the extreme eigenvalues of the Burden matrix encode global infor-

mation24 regarding the molecule. Thus by combining atomic properties with the Burden

matrix, the resultant eigenvalues encode global structure-property characteristics of a

molecule, leading to BCUT descriptors being termed holistic. The holistic nature of

these descriptors have led to their frequent use in studies of chemical diversity,25–27 li-

brary design28,29 and hit selection in high throughput screens.30–32

Topological descriptors have been widely used and have been shown to be very

useful in building predictive models. Since they only require connectivity information for

a molecule, the process of drawing and optimization of 3-D structures can be avoided.

This results in the rapid calculation of this class of descriptors. The downside to topolog-

ical descriptors is the lack of physical interpretability. Many of these types of descriptors

are quite abstract in nature and though a number of reports have described correlations

between certain descriptors and physical properties,33–35 these are not easily generalized.

3.2.3 Electronic Descriptors

Electronic descriptors consider various features of the molecules’ electronic envi-

ronment. These include the HOMO and LUMO energies, electronegativity and various

atom-centered partial charge descriptors. The ADAPT system is able to calculate atomic

charges using empirical data to fit the dipole moments of molecules36,37 or by using pKa

values.38 These approaches are attractive since they do not require any optimization to

be carried out and only consider molecular connectivity. The downside of these methods

is that they are based on a predefined set of parameters and thus will not necessarily

be accurate for a number of molecules. An alternative approach is to use an ab initio

or semi-empirical technique to calculate charges. Owing to the time intensive nature of

the former method, the semi-empirical approach is preferred and ADAPT is able to im-

port partial charges calculated using the AM15 Hamiltonian with the MOPAC package.

Though ADAPT focuses on charge based descriptors derived semi-empirically, there are

a number of studies describing the development and application of ab inito quantum

mechanical molecular descriptors39–42 that calculate properties such as electron density,
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Fukui functions and so on. Owing to the computationally intensive nature of the calcula-

tion of these descriptors, a method has been developed that works with atomic fragment

values, termed Transferable Atom Equivalent’s (TAE)43 which allow for the calculation

of quantum mechanical descriptors for whole molecules using atomic fragment values.

Together with a wavelet based encoding and a hybrid shape-property descriptor, TAE’s

have been used to build predictive QSAR models of high quality.44

3.2.4 Hybrid Descriptors

Hybrid descriptors are generally combinations of electronic or topological descrip-

tors and geometric descriptors and in general characterize the distribution of a molecu-

lar feature over the whole molecule. Examples include the charged partial surface area

(CPSA),45 hydrophobic surface area (HPSA)46 and hydrogen bonding47,48 descriptors.

The important characteristic is that they provide localized information regarding molec-

ular features. Thus, in the case of the HPSA descriptors, one is able to obtain specific

values of the hydrophobicity for different regions of the molecule as well as a global value

for the whole molecule. For example, consider Fig. 3.3. In the upper figure, the atom-

wise hydrophobicity values are displayed. These hydrophobicity values are then color

coded and mapped to the molecular surface to provide a visual representation of the

information in the lower figure. The atomwise hydrophobicity values can be combined

with surface area information for the individual atoms, as shown in Table 3.2, to obtain

a wide variety of descriptors (25 in the ADAPT implementation). Examples include the

atomic constant weighted hydrophobic and hydrophilic surface areas, total hydropho-

bic constant weighted hydrophobic surface area and the relative hydrophobicity. The

functional forms of these descriptors are given below.

PPHS-2 =
∑

(+SAi)(+ log Pi)

PNHS-2 =
∑

(−SAi)(− log Pi)

THWS =
∑

(log Pi)(SAi)

RPH-1 =
Most hydrophobic atom constant∑

log Pi

where SAi is the surface area for the ith atom and log Pi is the hydrophobic constant

for the ith atom and the + and − symbols indicate a hydrophobic or hydrophilic atom

respectively.
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The CPSA descriptors are similar in concept to the HPSA descriptors. In this

case, the surface area values are combined with partial charges leading to 25 descriptors.

In addition, a number of CPSA descriptors specific to certain atoms (such as N and O)

are also calculated. These descriptors are similar in concept to the Polar Surface Area

(PSA) descriptors49,50 which have been shown to be very useful in studies of intestinal

absorption51 and blood brain barrier crossing.52 The development of the Topological

Polar Surface Area (TPSA) method by Ertl et al.53 allows the rapid evaluation of polar

surface areas using only connectivity information (SMILES strings) and a library of

fragment contributions.

By combining molecular surfaces with atomic properties, these descriptors are

useful both in 2-D as well as 3-D QSAR methods. In addition, surface-property descriptor

types usually have simple physical interpretations and have been shown to be quite

information rich.54,55

3.3 QSAR Set Generation

An important step in the modeling process is the creation of QSAR sets. Given

a dataset of molecules, three mutually exclusive sets are created. The first, termed the

training set, is used during the model building process. The learning algorithm used to

build the model uses this set to characterize the dataset based on features present in

the training set. The next set is the cross-validation set and is used in the case of CNN

models. This set is used periodically during the training of the CNN and allows for the

monitoring of the error rate during training. In the case of linear models the training set

and cross-validation set are combined together. Finally the prediction set is a subset of

the dataset that is not used at all during model building. Its purpose is to validate the

final model and ascertain its predictive ability. These three sets are collectively termed

QSAR sets.

The most common technique to generate these sets is random selection. The

technique used in ADAPT is termed activity-weighted binning. In this procedure the

dataset is binned based on activity values and then molecules are selected based on a

probability, weighted by the bin populations.

An important point to note is that the learning algorithms are attempting to

capture features of the dataset from a smaller subset of the overall dataset. When a model

has been built it is tested on a another subset of the dataset. Clearly if the features that

are present in the training set are not sufficiently represented in the prediction set, the
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models’ predictive ability will be poor. Thus we must consider the idea of representative

QSAR sets. In general, the QSAR sets should be created such that the various features

present in the dataset should be proportionally represented in each individual QSAR set.

One approach to this problem is to classify the dataset based on features described by a

set of global molecular descriptors. The aim of such an approach is that these descriptors

should be able to represent the main features of the dataset. The QSAR sets are then

created such that molecules from the classes are represented in the same proportion that

was found in the overall dataset. This approach is discussed in more detail in Chapter 4

where a Kohonen self organizing map is used to classify the dataset and subsequently

create the QSAR sets. Alternative methods include the use of statistical molecular,56

D-Optimal57 or Kennard-Stone58 design methods.

3.4 Feature Selection

Though only four types of descriptors has been mentioned above, these classes

account for the nearly 300 descriptors calculated by ADAPT. Other programs such as

DRAGON are able to evaluate nearly 1200 descriptors covering a wide variety of descrip-

tor classes. It is apparent that in such a large descriptor pool a number of descriptors

will be highly correlated with other descriptors or else may have the same value for all

the molecules (such as number of aromatic rings, when the dataset has no aromatic

rings) and will thus contain no relevant information. Thus before descriptors can be

used for model building, the original descriptor pool must be reduced in size by selecting

only feature rich and relevant descriptors. This selection step is termed objective feature

selection. Once a reduced pool of descriptors has been created, suitable subsets of the

descriptors must be selected to build QSAR models with. This step is termed subjective

feature selection.

3.4.1 Objective Feature Selection

The original descriptor pool obtained from the evaluation of all available descrip-

tors is reduced in size by two main methods. First, an identical test is carried out. This

procedure removes descriptors that have a constant value for a user specified percentage

of the dataset. In general the percentage ranges from 80% to 90%. The next step is to

calculate the correlation coefficient between all the pairs of descriptors. If a pair of de-

scriptors exhibit a R2 value greater than or equal to a user specified cutoff, one member

of the descriptor pair is discarded. Which pair is discarded is in general random; however,
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if one member of the pair is a topological descriptor, it is kept in preference to the other

member. The reason for this behavior is that topological descriptors generally provide

a global description of a molecule. Though the same is true of geometric descriptors,

the larger number of topological descriptors available warrant their preferred inclusion

in the reduced descriptor pool. Another technique that is used to create a reduced pool

of descriptors is vector space descriptor analysis, which is based on the Gram-Schmidt

orthogonalization procedure.59 This technique considers descriptors as vectors and at-

tempts to create a descriptor pool as a spanning linear vector space. Essentially, it starts

by placing the descriptor that is most correlated to the dependent variable in the reduced

pool. The next step is to find the descriptor from the original pool that is most orthog-

onal to the current descriptor. This step is repeated, each time selecting the descriptor

from the original pool that is most orthogonal to the subspace spanned by the previously

selected descriptors. The procedure is repeated until the number of descriptors in the

reduced pool reaches a user-defined limit.

By varying the cutoffs for the identical and correlation tests and the size limit for

the vector space technique, the size of the reduced descriptor pool can be varied by the

user. In general a rule of thumb is used to decide on the size of the final reduced pool

and is given by
nmol

nreduced
= .6 (3.4)

where nmol is the number of molecules in the dataset and nreduced is the number of

descriptors in the reduced pool. This rule is derived from work carried out by Topliss et

al.,60 which quantitatively measured the relationship among the number of variables, the

number of observations and the probability of chance correlations in linear regression

models based on simulated data. The value of 0.6 represents a tradeoff between the

numbers of variables and observations to minimize the probability of chance correlations.

3.4.2 Subjective Feature Selection

This stage of feature selection refers to methods by which descriptor subsets are

selected from the reduced descriptor pool for model building purposes. The problem

is combinatorial in nature; for reduced pools of moderate size a brute force approach

to subset selection is unwieldy and for larger pools, computationally unfeasible. As a

result, for reduced pools containing more than 20 descriptors stochastic search methods

are preferred. Such methods include genetic algorithms61,62 (GA), simulated annealing63
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(SA), particle swarms64 and ant colony algorithms.65 ADAPT implements GA and SA

methods for subjective feature selection.

The details of the GA and SA methods have been described in Chapter 2. The

implementation of the GA in ADAPT involves the use of an objective function, which

depends on the type of model being built. In the case of linear models the genetic

algorithm is coupled with a linear regression routine. The fitness of a given descriptor

subset is a function of the root mean square error (RMSE) of the model based on that

subset. Another constraint that is sometimes applied is that models with values of the

t-statistic less than 4.0 are rejected. However, it has been seen in practice that this

sometimes leads to the rejection of models that have good predictive ability. Hence,

this constraint is not strictly applied and models with lower values of the t-statistic

are considered. In the case of descriptor subset selection for neural network models,

the objective function is a 3-layer, fully-connected, feed-forward CNN as described in

the previous chapter. The fitness for a given descriptor subset is defined using a cost

function based on the RMS errors of the training and cross validation sets used in the

CNN model. This cost function is defined as

Cost = RMSETSET + 0.5× |RMSETSET − RMSECV SET | (3.5)

where RMSETSET and RMSECV SET are the RMSE values for the training and cross-

validation sets, respectively. This cost function is designed to take into account model

performance based on the training set as well as the extent of overfitting. As described in

Chapter 2, care must be taken to prevent overfitting in a neural network model. This is

controlled by the use of the cross-validation set. By considering the RMSE for the cross-

validation set, the cost function penalizes models that cannot generalize as exhibited by

having poor cross-validation performance. The constant factor of 0.5 is an empirically

chosen value and has been observed to provide a balance between the RMSE values of

the training and cross-validation sets.

In the case of the simulated annealing algorithm, the above discussion holds,

except that the energy of a given configuration (i.e., descriptor subset) is now given by

the RMSE (for linear models) or the value of the cost function (CNN models).

It should be noted that in the case of CNN models, the use of the genetic or

simulated annealing algorithms results in models having optimal descriptor subsets for

the specified architecture. To fully investigate the performance of a selected descriptor
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subset, a variety of CNN architectures must be considered. This is carried out by de-

veloping models with the same set of input descriptors but varying architectures (i.e.,

varying numbers of hidden layer neurons). The final model for a given descriptor subset

is that which exhibits the lowest cost function.

3.5 Model Development

Once we have calculated the descriptors, reduced the original pool to a more

manageable size and then selected a number of optimal descriptor subsets we can then

proceed to build a set of models and choose the best one. The ADAPT methodology

for model development involves three steps. First a set of linear models are developed

using the top five to ten descriptor subsets selected by the GA or SA, coupled to the

linear regression routine as the cost function. These models are termed Type I models.

The best model is selected based on R2 and RMSE value. In many cases, such as

for biological properties, a simple linear relationship will not result in good predictive

performance. Thus, the next step is to investigate whether the selected descriptor subset

will show enhanced perfomance when used in a nonlinear relationship. Thus, we use the

descriptor subset from the linear model and build a nonlinear CNN model. For the

given descriptor subset (i.e., input neurons) a number of CNN models are developed by

varying the number of hidden neurons, subject to the constraint specified by Eq. 2.5.

Out of this set of models the final model is the one that exhibits the lowest cost function

defined by Eq. 3.5. This model is termed a Type II model. The problem with this type

of model is that it uses a descriptor subset that was selected by the GA (or SA), based

on its performance in a linear model. That is, the descriptor subset was optimal for

linear models but not necessarily for nonlinear models. As a result, the final step of

model building consists of using the GA (or SA) coupled to the CNN routine to search

for descriptor subsets that show good performance in CNN models. Once a number of

descriptor subsets have been obtained, the final architecture is obtained as described

above. Nonlinear models that are obtained by linking the feature selection routines to a

nonlinear cost function are termed Type III models. The model development procedure

described here is summarized graphically in Fig. 3.4. The result of this procedure is

to create a set of linear and nonlinear models. In many cases, both types of models

can be used in combination to investigate different aspects of the structure-property

relationship being modeled and in other cases one type of model may be sufficient to
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understand the trends present in the dataset as well as provide good predictive ability

for new observations.

3.6 Prediction, Validation and Interpretation

After a QSAR model has been developed the next step is to investigate its pre-

dictive ability. The simplest method is to test the model on a subset of the dataset

that has not been used during the model development process (the prediction set). The

statistics obtained from the results of the prediction set can give us some indication of

the model’s predictive ability. The most common statistics for linear models are R2 and

RMSE, though the former is not always a very reliable indicator of the goodness of fit as

shown in Fig. 3.5. The figure plots the predicted versus observed values obtained from a

linear regression model based on a simulated dataset. The dataset consisted of two well-

seperated Gaussian clusters. Clearly, the relationship between the independent variables

and the dependent variable is not linear. However, the R2 value of 0.91 misleadingly

indicates that the regression model fits the data well.

Another aspect closely related to predictive ability is generalizability. The main

problem with the use of a single prediction set as a test of a model’s predictive ability is

that it is a limited indicator of the model’s ability to handle new data. Generalizability

is a more general term than predictive ability and essentially describes how the model

behaves when faced with new data. The question of generalizability arises owing to the

fact that a testing methodology based on a subset of the original dataset is inherently

biased since the prediction set will, to some extent, share distribution characteristics of

the training set. Obviously this may not always be true and is dependent on the manner

in which the training and prediction sets are generated. But in general one can assume

that new datasets will share the characteristics of the data to differing extents. Clearly a

new dataset that differs greatly from the training data (say a dataset of linear molecules

versus a dataset of cyclic molecules) will not give rise to good predictions from the model.

On the other hand a new dataset containing molecules that are similar to the training

data can be expected to lead to good predictions.

How can we measure generalizability? The answer to this question is not clear

cut. One possible indicator of model generalizability is the relative performance of the

model on cross-validation and prediction sets. This possibility is discussed in more detail

in Chapter 4. An important point to note regarding this approach is that this requires

the use of a cross-validation set and consequently cannot be applied directly to linear
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models built using multiple linear regression. An alternative approach to the question of

generalizability, alluded to above, is to try and quantify how well a new dataset will be

predicted by a model. Essentially, this method tries to link some aspect of model quality

to the structures of the molecules being considered. One approach is to link model quality

to some similarity measure between the training dataset and a new dataset. Yet another

possibility is to predict the performance of a model on a new dataset directly, using

information from the model and the new structures. These approaches are discussed in

more detail in Chapter 5.

Validation of a QSAR model is very similar in nature to the ideas discussed

above. However, whereas the above discussion focuses on validation of a final QSAR

model, validation also plays an important role during model development and is gen-

erally termed cross-validation. More specifically, algorithms such as neural networks

and random forests all benefit from a validation mechanism during model development.

In the case of a neural network, cross-validation is required to prevent over-training

as described in Section 2.2.1. Similarly, the random forest algorithm uses a built-in

cross-validation scheme to provide an internal measure of accuracy.

The ADAPT CNN methodology uses two forms of validation. One option is to use

a fixed cross-validation set through all validation iterations. The second option is to use

a leave n% out validation scheme. The latter method works by randomly selecting n% of

the training set at each validation iteration and evaluating a cross-validation RMSE. A

wrapper is also available which carries out a round robin leave n% out validation scheme

(though this is probably more correctly termed as an ensemble method). In contrast

to the above method it generates multiple training, cross-validation and prediction sets

such that each member of the dataset is present in one of the prediction sets (and

correspondingly one of the cross-validation sets). Though this is more rigorous than

than a neural network algorithm with a fixed cross-validation set it is probably not

as useful as the leave n% out method using randomly selected cross-validation sets.

The reasons are twofold. First, the procedure whereby each member of the dataset

is predicted once is extremely time consuming. Second, this procedure results in an

ensemble of neural network models (for each training, cross-validation and prediction

set combination) rather than a single model. One possible justification for ignoring the

latter drawback is that neural network models are in general not considered interpretable

and are usually developed for their predictive ability. Thus the fact that an ensemble

of models is generated rather than a single model may be justified to some extent if the

predictive ability of the ensemble is significantly better than the single model. However,
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as noted by Agrafiotis et al.,66 the “benefits of aggregation methods are clear but not

overwhelming.”

Validation, in the sense of neural networks and random forests, is not directly

applicable to the case of linear model’s developed using multiple linear regression. How-

ever, one method that can be used to gain an idea of a linear model’s predictive ability is

to use a leave-one-out (LOO) procedure resulting in a prediction for each member of the

dataset. This method results in a cross-validated R2, usually denoted by Q2. However,

the utility of this statistic is debatable and numerous discussions are available in the

literature.67–71

An important component of the validation process is testing for chance correla-

tions. That is, we would like to know whether the results generated by the model were

due to chance correlations rather than the model actually capturing a specific structure

activity relationship (SAR). This is important in the context of the ADAPT methodol-

ogy as the algorithms used during subjective feature selection are stochastic in nature.

Thus it is possible that the results of a model developed on the basis of a descriptor sub-

set selected by the GA or SA are simply due to luck rather than an any real relationship

between the dependent variable and the independent variables. The simplest strategy

to test for chance correlations is to scramble the dependent variable and estimate R2

and RMSE values for the model using the scrambled dependent variable. Since the

fundamental assumption of QSAR modeling is that descriptor values correlate with the

observed activity (or property) one would expect that the R2 for the scrambled depen-

dent variable would decrease and that the RMSE would increase. Graphically, a plot of

the observed versus predicted property should appear random as illustrated in Fig. 3.6.

If the results of the scrambled runs are similar to those produced by a model using the

true dependent variable then one must conclude that the model has not captured a real

structure activity relationship. Topliss et al.60 discuss the role of chance correlations in

the context of linear regression and their simulations provide a guide to the probability

of observing a given value of R2 (for the case of random variables). The simulation only

considered a small set of possible variable combinations and thus is not an exhaustive

study. However it does indicate the importance of checking for chance correlations. The

method of scrambling the dependent variable can be applied to both linear and nonlinear

models. In either case this technique tests the resultant model for chance correlations.

Another possibility is to test the feature selection algorithms themselves for chance

correlations. That is, are the best descriptor subsets arising due to chance or are they
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really minima in the descriptor space searched by the GA or SA? A simple way to inves-

tigate this type of chance correlations is to evaluate the statistics of models built from

randomly selected descriptors. Similar results as described above would be expected. In

this case the difference should not be as large since the descriptors will still be correlated

to the dependent variable, but owing to random selection the descriptor combinations

may not be optimal and hence should result in poorer statistics compared to a model

built with an optimal subset of descriptors.

At this point we have in hand a validated model with (it is hoped) good predictive

ability. The important feature of the model is that it should have incorporated one or

more structure activity relationships. The final task of a QSAR modeling methodology

is to interpret the model to describe these relationships. The ADAPT methodology

leads to both linear and non-linear models and currently both types of models can be

interpreted. The interpretation of linear models utilizes the PLS technique described by

Stanton.72 Its ability to dissect the effects of individual descriptors on the dataset allows

a very detailed description of any structure activity relationship captured by the model.

A brief description of the PLS technique is provided below.

The first requirement of this technique is to have a statistically valid linear regres-

sion model - generally characterized by high absolute values of individual t-statistics and

a high value of the overall F -statistic. The next step is to build a PLS model using the

selected descriptors. An important observation at this point is that the PLS algorithm

employed in this work used a leave-one-out cross-validation scheme to determine the op-

timal number of PLS components. If the optimal number indicated by cross-validation

does not equal the number of descriptors, the initial linear model was overfit and thus

cannot be usefully analyzed by the PLS technique.72 Given a validated model we ex-

tract the X and Y scores and the X weights from the PLS analysis. The X weights give

an m × n matrix, where m is the number of descriptors and n is the number of PLS

components, which are simply linear combinations of the descriptors used in the original

original linear models. Essentially each column can be interpreted as the contributions

of individual descriptors to a given component. The X and Y scores will be also be

matrices with the PLS components in the columns and the observations in the rows.

The Y score vector for a given component is analogous to a predicted value made by

the original linear model, except that now it models the transformed variable denoted

by the X score vector. For each component we create scoreplots by plotting the X score

vector against the Y score vector. The next stage involves a simultaneous analysis of the

components and their corresponding scoreplots. Ideally we would see that there are one
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or two descriptors in each component that have high weight values - indicating that they

are the main contributors to the component. We start with the first PLS component and

obtain the most weighted descriptor. We then consider the score plot for that component.

Compounds in the upper right and lower left are properly predicted whereas compounds

lying in the other quadrants are either over-predicted (upper left) or under-predicted

(lower right). Compounds that are correctly predicted as active will tend to lie in the

upper right quadrant and those that are correctly predicted as inactive will occupy the

lower left quadrant of the scoreplot. One can thus conclude that compounds with high

values of the most weighted descriptor (assuming the weight is positive) will be more

active than compounds with low values. This argument is reversed if the weight for the

descriptor is negative. The under- or over-predicted compounds are not explained by the

current component. Thus we must consider the next component and its most weighted

descriptor. One would expect that compounds that were poorly predicted by the first

component will be well predicted by the second one and the most weighted descriptor

for this component will be able to account for the good predictions. Once again, for the

poorly predicted cases, we move to the next component and proceed as before.

At the end of this procedure the role of the individual descriptors in determining

activity (or lack of it) will have been extracted from the model. In the words of Stanton,73

“it’s like reading a book”. This technique has been used in the interpretation of biological

activity of artemisinin analogous74 and the inhibitory activity of PDGFR inhibitors.55

In the case of a neural network model two forms of interpretation can be generated.

First, a measure of the importance of the input descriptors can be generated using a

technique analogous to the measure of variable importance in random forests.75,76 In

addition, we can also provide a more detailed interpretation of a CNN model based on

a method inspired by the PLS technique described above. The development of the CNN

interpretation methodologies and examples of applications are described in Chapters 8

and 9.

3.7 Conclusions

The development of QSAR models proceeds in a stepwise fashion as described in

this chapter. The first step is the entry of the molecular structures and optimizations for

geometry and electronic properties. Next, molecular descriptors are calculated for the

dataset and objective feature selection is carried out to reduce the number of descriptors

to a manageable pool. The next step is to select subsets of descriptors to build models. As
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has been shown, descriptor selection and model building are interlinked, using stochastic

algorithms to search for descriptor subsets that lead to low cost (in terms of RMS error

for linear and cost function for nonlinear) models.

The model building process generally proceeds in three stages. In the first stage a

set of linear models are built. In the second stage, the descriptor subsets used in the best

linear models are then used to build neural network models, the assumption being, that,

if a nonlinear structure-activity relationship is present, the CNN should be able to better

capture it. In the third stage, the GA or SA feature selection method is coupled with

the CNN routine to search for descriptor subsets that perform optimally in a nonlinear

model. In both the second and first phases, the final architecture of the CNN model,

for a selected descriptor subset, is decided upon by rigorously investigating all possible

architectures subject to the constraint on the number of adjustable parameters.

Finally, after a number of models have been generated, they are validated and

then investigated for predictive and interpretive ability. The former is usually good for

the selected models. The resultant models can then be interpreted. Depending on the

type of model different degrees of interpretation are possible. Linear regression and

CNN models can be interpreted in a detailed manner. In addition, broad measures of

descriptor importance can also be obtained for CNN models and ensemble models (such

as random forest models) though such interpretations are necessarily not as informative.

The following chapters discuss applications of the QSAR methodology described

here as well as investigations of specific steps in the QSAR methodology.
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Table 3.1: A list of the descriptors and their associated class
available in ADAPT

Type Name Function Reference

Topological DKAPPA κ shape indices 77–79
DMALP All self avoiding paths of length upto the

longest path in the structure
80,81

DMCHI χ molecular connectivity indices 15–17
DMCON Molecular connectivity indices, similar to

DMCHI but corrects for heteroatoms in
rings and aromatic rings

82,83

DMFRAG Counts for a variety of substructures
DMWP Weighted paths based on Randic’s

molecular ID
21

DEDGE Molecular distance edge descriptor, λ 18
CTYPES Hybridization of carbon atoms based on

connectivity only
DESTAT Electrotopological state 84,85
DPEND Superpendentic index 86

Geometric DSYM Structural symmetry index, equal to
ratio of the number of unique atoms to
the total number of atoms in a hydrogen
suppressed structure

ECCEN Eccentric connectivity index 19
DMOMI Moments of inertia along X, Y and Z

axes
11

SAVOL Molecular surface area and volume 12
SHADOW Shadow areas obtained by projecting a

3-D structure onto the XY, XZ or YZ
planes

13,14

DGRAV Gravitational index 87
LOVERB Molecular length to breadth ratio

Electronic CHARGE Dipole moment, charges on most
negative and positive atoms and the sum
of absolute values of all charges

HLEH HOMO & LUMO energies and
electronegativity and hardness

MRFRAC Molecular refraction 88
MPOLR Molecular polarizability 89

Hybrid CPSA Charged partial surface areas 45
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Table 3.1: (continued)

Type Name Function Reference

DATOM CPSA descriptors for specific groups and
atoms (carbonyl, O, N, S, and halogens)

HBSA Hydrophobic surface areas 54,90
HBMIX Intermolecular hydrogen bonding ability 47,48
HBPURE Intramolecular hydrogen bonding ability 47,48

Table 3.2. The hydrophobicity and solvent accessible surface area
values calculated for glycine. These values are combined to gener-
ate the 25 HPSA54 descriptors.

Serial No. Atom Label Hydrophobicity Surface Area (Å2)

1 C -0.20 2.58

2 C -0.28 7.36

3 O -0.15 48.00

4 O -0.29 26.00

5 N -1.02 19.04

6 H 0.12 25.01

7 H 0.12 25.33

8 H 0.30 30.81

9 H 0.21 29.81

10 H 0.21 21.98
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A B C D

Fig. 3.1. The four types of fragments used to calculate χ de-
scriptors. A – 2nd order path. B – 3rd order cluster. C – 4th

order path cluster. D – 5th order chain. The order refers to the
number of edges in each fragment.

Fig. 3.2. A diagram illustrating the decomposition of 1-
methyl 3-ethyl benzene into fragments for subsequent use in
the calculation of χ descriptors. The annotations of the cen-
tral structure correspond to the vertex degree of each atom.
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A

B

Fig. 3.3. Graphical representations of hydrophobicity values for
the glycine molecule. A shows the numerical hydrophobicity val-
ues and B displays the solvent accessible surface area color coded
by the hydrophobicity values. Blue regions indicate the most hy-
drophilic groups and red corresponds to the most hydrophobic
groups.



78

Fig. 3.4. The sequence of steps involved in model building using the ADAPT
methodology. Here GA and SA refer to the genetic algorithm and simulated an-
nealing feature selection methods respectively.
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Fig. 3.5. A plot generated from a linear regression model, using simulated
data, with a high value of R2, but clearly unable to explain the variation
in the dataset. The red line represents the fitted regression line.
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A B

Fig. 3.6. Plots generated using simulated data, illustrating the results of testing chance corre-
lations in a linear model by scrambling the dependent variable. Plot A represent the original
linear model. Plot B represents the linear model rebuilt after scrambling the independent
variable.
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