
15

Chapter 2

Statistical & Optimization Techniques

QSAR studies can be broadly divided into two types - regression and classification.

The development of QSAR models essentially consists of the application of statistical

methods to chemical datasets. As such, the statistical and machine learning literature

provides a number of useful techniques. Some techniques are specifically designed to build

classification models whereas others can carry out both classification as well as regression.

In addition to these techniques, a number of methods are available for the optimization

of various parameters and selection of variables required in the model building process.

These can be deterministic methods such as the BFGS algorithm1–4 and the Nelder-Mead

simplex algorithm5 or stochastic methods such as genetic algorithms6–8 and simulated

annealing.9 This chapter discusses the underlying details of the various modeling and

optimization techniques used in this work.

2.1 Linear Methods

As the title of this section indicates linear methods employ a linear relationship

between the predictor variables and the observed response to develop a predictive model.

In many QSAR problems, structure property trends can be modeled reasonably well

by linear approximations. In general it is observed that physical properties are well

modeled by these types of methods. In the case of biological properties linear models do

not always exhibit good predictive performance. The poorer behavior of linear models

when faced with biological structure property trends is understandable when we consider

the fact that biological properties in general are the result of a number of interactions

that might include absorption, metabolic degradation, excretion and so on. Clearly the

relationship between molecular structure and these factors is complex and in general

nonlinear. However, linear methods are useful as a first step in the modeling process

and, though not always very accurate, the simple interpretation methods that can be

applied to linear models makes up, to some extent, for the lack of predictive ability

for these methods. Though linear methods can be applied to both classification and

regression we focus on the latter application in this section.

16

2.1.1 Multiple Linear Regression

A linear relationship between an observation’s response (i.e., observed value) and

its independent variables can be modeled by

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi i = 1, 2, . . . , n (2.1)

where yi is the response for the ith observation and xi1, xi2, . . . , xip are the independent

variables for the ith observation and n is the number of observations. β0, β1, . . . , βp are

parameters that are to be estimated. εi is the error term and is assumed to be a normally

distributed random variable. Multiple linear regression is a technique by which yi and

β0 . . . βp can be estimated. Thus Eq. 2.1 may be written as

ŷi = b0 + b1xi1 + b2xi2 + . . . + bpxip (2.2)

where b0, b1, . . . , bp are the estimated values of the parameters in Eq. 2.1. The most

popular algorithm to estimate the parameters is the least squares method which considers

the best fitting straight line to be that which minimizes the square of the error between

the predicted response, ŷi and the observed response, yi.

Once the parameters have been estimated, the model quality can be ascertained

in a number of ways. Two common measures of model quality are the R2 value and the

root mean square error (RMSE). The R2 is also known as the Pearson coefficient and

ranges from -1 to +1. The RMSE is defined as

RMSE =

√
1
n

∑
(yi − ŷi)

2 (2.3)

Good models are characterized by high value of R2 and low values of RMSE. However,

it is well known that R2 is not always a good indicator of model quality and in many

cases can be misleading. An alternative to R2 is Q2 which is obtained by using a leave-

one-out (LOO) cross-validation procedure. That is, the linear model is generated using

the whole dataset excluding one point. The response for this point is then predicted

using the model and this procedure is repeated for all the points in the dataset. The R2

for these predictions is denoted by Q2. Though this is more reliable than R2, especially

for small datasets, care should be taken as it has been shown to be a poor indicator

of predictive ability in 3D QSAR10 and 2D QSAR11 models. Other indicators of model

quality include the F -statistic and partial F -statistics.12

17

Individual predictions can be examined by a variety of methods. The simplest

method is to plot residuals (the difference between the observed property and the pre-

dicted value) versus the observed response or index number. In either case a good model

is characterized by a normal random distribution of residuals. Distinct patterns (such as

upward or downward trends) are indicative of heteroscedasity and the dataset must be

reexamined. The residuals may also be examined by making a normal probability plot

(Q-Q plot). If the residuals do have a normal random distribution, this plot will be a

straight line. Deviations from this will indicate shifts in location or scale as well as the

presence of outliers.13 When studentized residuals12 are used, residuals lying above 2.0

or below -2.0 are traditionally designated as outliers. Outliers can also be determined by

the use of regression diagnostics such as the Cooks distance and Mahalanobis distance.

Once outliers have been detected the model can be regenerated excluding the outlying

compounds from the dataset.

2.1.2 Robust Regression

An alternative to the multiple linear regression algorithm is to use a robust regres-

sion algorithm. As mentioned above the least squares algorithm attempts to minimize

the squared deviations of the predicted response. This method is characterized by a

breakdown point (a measure of the capability of an estimator to tolerate noisy data)

of 0%. Robust regression utilizes alternative algorithms characterized by much higher

breakdown points. Examples include the least median squares and least trimmed squares

algorithms.14 The advantage in using a robust regression method is that it uses algo-

rithms that dampen the influence of bad points and attempts to take into account the

whole dataset. Bad (or influential) points will be characterized by high residuals and

thus robust regression combines model building and outlier detection in one operation.

Thus the three-step process of model building, outlier detection, model regeneration is

avoided.

2.2 Nonlinear Methods

Nonlinear methods can be considered a generalization of linear methods. Nonlin-

ear estimation methods do not make any assumptions about the nature of the relationship

between the predictor variables and the response. In general, the relationship must be

specified in parametric form by the user. When considering nonlinear models, distinction

18

must be made between intrinsically linear and intrinsically nonlinear models. The for-

mer class of models can be transformed to a linear form and subsequently analysed using

linear methods. Examples of these types of methods include logit and probit regression

models. In the latter case, the nonlinear form of the model cannot be transformed to a

linear form. Examples of this type of model include the general growth model and models

used to determine drug responsiveness and half maximal response. In general, nonlinear

models are essentially optimization problems. That is, the parameters are optimized to

minimize certain criteria. Some approaches to nonlinear regression include least squares,

maximum likelihood and function minimization (quasi-Newton and simplex methods).

In this work we focus specifically on the use of neural network algorithms for

nonlinear classification and regression. Neural network algorithms are a specific class of

nonlinear methods. They differ from traditional nonlinear methods in the representation

of information extracted from the dataset. In contrast to nonlinear methods described

above, neural networks do not represent the relationships within the data in an explicit

functional form. The relationships in the dataset are encoded by a set of connections

between units termed neurons. Methods have been described that attempt to represent

this encoding in analytical form,15 but this is not generalizable to all types of neural net-

work algorithms. Essentially neural network algorithms attempt to mimic the behavior

of a human brain and thus an essential feature of these algorithms is the ability to learn

the relationships present within a dataset. In the words of Haykin16

A neural network is a massively parallel distributed processor made up of

simple processing units, which has a natural propensity for storing experien-

tial knowledge and making it available for use. It resembles the brain in two

respects:

1. Knowledge is acquired by the network from its environment through a

learning process.

2. Interneuron connection strengths, known as synaptic weights, are used

to store the acquired knowledge.

However, as pointed out by Ripley,17 the above definition excludes a number of neural

network algorithms such as the Kohonen network.18 The neural network literature de-

scribes a large variety of neural network algorithms and Haykin16 provides an extensive

discussion of a variety of neural networks. In this section we focus on the two types

19

of neural networks used in this work, viz., feed-forward neural networks and the self

organizing map.

2.2.1 Feed-Forward Neural Networks

The fundamental components of a neural network are neurons. Neurons are es-

sentially computation units that accept an input value and generate an output value.

In this sense, a neuron can simply be considered a mathematical function. The actual

behavior of the network emerges from the connections between the neurons and weights

assigned to these connections.

The neural network models considered in this work are termed 3-layer, fully-

connected, feed-forward neural network models (which is a specific case of the multilayer

perceptron16). The first layer is termed the input layer and each neuron in this layer

corresponds to the input variables for the model. The second layer is termed the hidden

layer and is responsible for nonlinearly combining the inputs. The final layer is termed

the output layer, and in all the neural network models in this work, contains a single

neuron whose output is the predicted property. The term fully-connected indicates that

all the neurons in a given layer are connected to all the neurons in the next layer. Fig. 2.1

shows a schematic of this type of neural network. Let us now consider the internals of

the network in a little more detail.

The role of a neuron is to accept input values and weights associated with connec-

tions to the neurons in the preceding layer. Essentially, a neuron consists of a function

whose output represents a hyperplane that divides the input space of the neuron into

two regions - an on region and an off region. The function used in a neuron is termed

the transfer function and when this function is linear this interpretation holds exactly.

However, the main reason for the utility of a neural network is that it exhibits the uni-

versal function approximation property19,20 and to achieve this, the transfer function

is generally nonlinear in nature. In this case, the above interpretation still holds to a

good degree. A number of transfer functions have been reported in the neural network

literature and the implementation used in this work utilizes a sigmoidal transfer function

given by

O =
1

1 + exp(−
∑

xiwi + b)
(2.4)

where O is the output of the neuron, xi is the output value of the ith neuron in the

preceding layer, wi is the weight for the connection between this neuron and the ith

neuron in the preceding layer and b is the value of the bias term. Fig. 2.2 is a graphical

20

representation of a hidden neuron. The diagram stresses the fact that the bias term can

be considered as a neuron whose output value is always 1. The value of the bias term

thus represents the weight for the connection between the bias neuron and the hidden

neuron in question.

Fig. 2.3 shows a plot of the transfer function defined by Eq. 2.4. The weights

provide a means for the neural network to assign importance to specific neurons. In the

case of a 3-layer network, weights between the input and hidden layer neurons allow the

network to be configured so that more important input variables will have greater contri-

butions to the hidden layer neurons. It should be noted that in this type of configuration,

the input layer neurons do not utilize the transfer function. Instead, the job of the input

neuron is simply to scale the raw descriptor values to a suitable range (0.05 to 0.95 in

the case of the current implementation). The role of the bias term can be understood

in terms of a hyperplane interpretation of the transfer function. In this interpretation

the bias term plays the role of the intercept term. This view is exact when the transfer

function is linear. In effect the bias term shifts the hyperplane in the input space of a

neuron to obtain an optimal partitioning of the space into on and off regions. An alter-

native view is that the bias term controls whether the neuron output is on (0 or close to

0) or off (1 or close to 1). In the case of a neuron with a sigmoidal transfer function, the

bias term thus controls where on the sigmoidal function the output will lie. When the

output value is close to zero, the neuron will have little contribution to the next layer,

whereas when the output value is high, the neuron will have a significant contribution to

the next layer. In effect, the weights and biases allow the network to learn the features

present in the dataset and the optimal set of weights and biases encode these features

allowing the network to make accurate predictions.

At this point we have described the anatomy of a neural network. The next step

is to obtain a set of weights and biases that will allow the network to make accurate

predictions. The number of weights and biases is defined by the configuration of the

neural network. In the case of the 3-layer network, the number of weights and biases

is defined by the number of input and hidden layer neurons. Intuitively, increasing the

number of hidden layer neurons will lead to a more accurate network. However this will

also lead to overfitting. One rule of thumb used to determine the suitable number of

weights and biases is that the total number of parameters should be less than half the

size of the training set used to build the model,21 that is,

nInH + 2nH + nO ≤ nTSET

2
(2.5)

21

where nI , nH and nO are the number of input neurons, hidden neurons and output

neurons respectively and nTSET is the number of observations in the training set. The

number of neurons in each layer define the architecture of the neural network. Thus, using

the above notation, a 3-layer neural network is said to have a nI−nH−nO architecture.

For all the neural network models reported in subsequent chapters the value of nO is set

to 1.

Once the number of parameters have been chosen, the next step is to obtain a set of

optimal parameters. The network is initialized with a set of weights and biases generated

using a combination of generalized simulated annealing and the BFGS algorithm. Then,

each member of the training set is presented to the network. For each member, the

network generates a prediction of the activity or property in question. After each training

sample is presented to the network the prediction error is used to update the weights and

biases. Traditionally the training procedure utilizes the backpropagation algorithm.16

However, this algorithm is relatively inefficient and hence we use the BFGS quasi-Newton

algorithm.22 The important feature of the training phase is that it is supervised. That

is, to train the network, the observed values of the training samples are required. This

is in contrast to unsupervised methods (such as the self-organizing map) that do not

require the observed values of the training set. Once all the examples in the training set

have been presented to the network the process is repeated for a user specified number

of cycles. It is also important to note that since the network is trained using a quasi-

Newton algorithm, the optimized weights and biases depend on the initial configuration.

As a result multiple runs are required to ensure that a representative result is obtained.

As mentioned above, too many parameters can lead to overfitting. In addition, as

training progresses, the training RMSE will continually decrease and after a certain point

the network will start to memorize the noise in the dataset. That is, the network will

overfit the data. To prevent this, cross-validation is used. This procedure uses a portion

of the dataset to measure the performance of the network, in terms of RMSE, at regular

intervals during training. In effect, the cross-validation set acts as a pseudo external

prediction set. Ideally the RMSE for the cross-validation set will smoothly decrease as

training progresses and at one point will start to increase. This point represents the

optimal configuration of the weights and biases and any further training beyond this

point will lead to overfitting. In practice, the cross-validation RMSE does not always

smoothly decrease, but in general, a global minimum does occur. The behavior of the

RMSE values for the training and cross-validation sets are shown in Fig. 2.4. The use of

the cross-validation set allows us to define a cost function which can be used to assess the

22

quality of a model by simultaneously taking into account its training and cross-validation

performance. The cost function in the CNN algorithm used in this work is defined as

Cost = RMSETSET + 0.5× |RMSETSET − RMSECV SET | (2.6)

where RMSETSET and RMSECV SET represent the RMSE values for the training and

cross-validation sets. The form of the cost function penalizes models that have overfit,

represented by high RMSE for the cross-validation set, and thus characterizes a given

model better than simply considering the RMSE of the training set.

Once a model has been trained, its generalizability is then evaluated by passing

an external prediction set and noting the RMS error. Ideally, one would expect similar

RMSE values for the training, cross-validation and external prediction sets, but in general

this is not the case. This aspect of model assessment is discussed in more detail in

subsequent chapters.

2.2.2 Kohonen Self-Organizing Maps

A Kohonen self-organizing map (SOM) is an unsupervised neural network that

uses only the independent variables of the dataset and is generally applied to classification

problems. The SOM was first described by Kohonen18 in the 1980’s. The use of SOM’s

is widespread and examples of their application include the analysis and prediction of

NMR spectra,23,24 classification of reactions25 and QSAR analysis.26–28

The SOM can be viewed as an elastic net of points in 2-D, which are molded to

the specific features of the compounds used for training. In this sense, the SOM is also

a dimension reduction algorithm. Training occurs as the SOM’s neurons compete with

each other for selection. At each training iteration, the selected neuron and its neighbors

are modified to resemble the applied example compound.

SOM’s can appear in a variety of forms18 ranging from a square (or rectangular)

grid to a hexagonal array. In this work we use a square configuration. In order that each

neuron has the same number of neighbors, the grid is designed so that it wraps around

the edges, effectively transforming the grid of neurons into a torus. However, for ease of

visualization and discussion we will refer to the arrangement as a square grid.

Each compound in the training set is represented by a vector,

Xi = (xi1, xi2, · · · , xin) (2.7)

23

where n is the number of independent variables employed. Each neuron on the square

SOM grid is also a vector,

Mi = (mi1,mi2, · · · ,min) (2.8)

where n is defined above. The neurons on the grid are initialized with random vectors.

The size of the grid is chosen by trial and error, guided by a rule of thumb described by

Chen,29 which states that the number of neurons should be approximately one to three

times the number of examples in the training set.

The training process for a SOM is iterative. Each training iteration involves

comparing each member of the dataset to all the neurons in the grid and determining

the grid neuron that is closest, in terms of Euclidean distance,

dpq =

√√√√ n∑
i=1

(xpi −mqi)2 (2.9)

to the submitted neuron. The grid neuron that is most similar to the input vector is the

winner. Then, the winning neuron and the surrounding neurons are modified, according

to this equation:

mi(t + 1) = m(t) + hci(t)[x(t)−mi(t)] (2.10)

where t represents training iterations, mi represents the winning neuron and x repre-

sents the training set member. Here hci(t) is termed the neighborhood kernel, and it

determines which neurons are neighbors and how such neighboring neurons will be mod-

ified. Neurons that are further away (in a topological sense) from the winning neuron are

modified to a smaller degree than neurons that are closer. The simplest neighborhood

kernel is the bubble function18,30 (also referred to as a fixed window) which is non-zero

for the neighborhood but zero elsewhere. The map in this work implemented a Gaussian

kernel,18 defined as

hci(t) = α(t) exp

(
−||rc − ri||2

2σ2(t)

)
(2.11)

where σ(t) is the neighborhood radius at time t which monotonically decreases with time.

Thus, the number of neurons considered to be neighbors decreases as training progresses.

The term ||rc−ri|| represents the Euclidean distance between the winning neuron and the

neighboring neuron. Thus, neighbors closer to the selected neuron will undergo a larger

modification than neurons further away from the selected neuron. α(t) is the learning

24

factor, and it influences the extent to which a neuron should be modified. Initially,

neurons within a large radius surrounding the selected neuron are considered neighbor

neurons. The radius of the neighborhood is decreased in successive training iterations,

and in the last stages of training only the nearest neighbors of the selected neuron are

modified. The effect of this variable neighborhood function is that in the early stages

of training the neurons are modified on a global scale, which leads to a global ordering.

Near the end of training, the smaller neighborhood results in fine-tuning of the map

features. The neighborhood function thus controls the sensitivity of the map.

The actual modification is controlled by the learning factor, α(t). The learning

factor is a function that monotonically decreases from 1 to 0 as training progresses. Once

α(t) reaches zero, training stops. Kohonen18 mentions several ways of modifying α(t),

and the implementation used in this work employs a constant decrement,

α(t + 1) = α(t)− 0.01 (2.12)

which implies that after 100 training iterations α(t) will be zero. This represents an

upper limit on the number of training iterations.

As mentioned, the result of the training procedure is to create regions of cells on

the map that are similar to each other. After training the neurons can be assigned classes

by determining which training set member is the closest (in an Euclidean sense) to a

given neuron and assigning the class of that training set member to the neuron. Once this

is done for all the neurons, a new observation can be classified by assigning the class of

the closest neuron in the map, to it. An example of this approach to classification can be

found in Chapter 4. An alternative usage is to avoid explicit classification of the neurons

in the map and instead cluster the training set members (as well as new observations).

In this approach one would simply assign observations to neurons based on Euclidean

distance between the members and each neuron. As a result, certain neurons may be

assigned more than one training set member and some neurons will not be assigned

any. The number of members assigned to a given neuron can be used to compute a

density which can then be used to color code the map providing an easy visual display

of the topology of the dataset. An example of this approach is shown in Fig. 2.5, which

represents a SOM trained using a portion of the NCI AIDS dataset.31

25

2.3 Algorithmic Methods

Breiman32 categorized a number of statistical methods as algorithmic owing to

the fact that they are essentially model free. That is, these methods do not help us to

understand the relationship between predictor variables and the response by developing

a model relationship. However, their utility lies in the fact that they can be used as black

box prediction methods and usually show good predictive ability for both classification

and regression. There have been a number of applications of algorithmic methods in the

physical and medical sciences.33–36 This class of modeling techniques includes prototype

methods such as k-means clustering and learning vector quantization37 as well ensemble

methods such as the random forest technique. In this section we describe two algorithmic

techniques used in this work.

2.3.1 Random Forests

The random forest (RF) method was developed by Breiman as an extension of the

decision tree38 technique. Decision trees are non-parametric, nonlinear models that allow

the user to easily understand how or why an observation is classified or predicted. They

have been extensively used in the medical field39,40 as well as in various chemical41–43 and

biological44,45 applications.

The goal of the decision tree technique is to split the dataset into a tree-like

structure, using a single descriptor at each split point. A variety of algorithms to achieve

this are available and we focus on the recursive partitioning algorithm.46 The dataset

(also known as the root node), D, is first split into two nodes, say D1 and D2, based

on the value of a selected descriptor, say Xi. If Xi is binary in character then the jth

observation from D is placed in D1 or D2 depending on whether the value of Xi for the

jth observation, denoted by Xij , is 0 or 1. In case Xi is real valued, a specific value of Xi,

say xi is calculated such that if Xij < xi then the jth observation goes into D1 or goes

into D2 otherwise. The method by which a descriptor is selected is based on a quantity

known as purity. All the available descriptors are considered individually as candidates

for the splitting decision. The purity of a split can be defined in a number of ways. One

possible approach is to define the purity of a split as the fraction of observations, in the

resultant nodes, that will be of a single class. The descriptor that leads to the highest

value of purity will be selected to perform the splitting. Other definitions of the purity

include the Gini index, χ2 and G2.38 It should be noted that the same descriptor can be

chosen at multiple split points.

26

After all the observations have been placed in either one of the nodes, the algo-

rithm considers each node and performs the same operation described above. Thus D1

would be split into two nodes, say D3 and D4 and similarly for D2. A flowchart summa-

rizing the algorithm is shown in Fig. 2.6. If this process is repeated continously, the end

result will be a perfect tree, where each node contains a single observation. Nodes which

cannot be split further are termed leaf nodes. Such a tree will perfectly predict the data

used to build the tree but will be nearly useless for new observations. Thus a perfect

tree will overfit the data. As a result, heuristics are used to determine when the tree

should stop growing. These include specifying a minimum node size, such that nodes

with fewer observations will not be split further. Alternatively, a node is not split, if it

exhibits a purity greater than a certain specified value or the purity does not increase

as a result of the split. Other possibilities include a variety of cross-validation methods.

These heuristics are collectively known as pruning rules and detailed discussions of this

area can be found in the statistical literature.39,46,47 An example of a tree is shown in

Fig. 2.7. The figure represents a decision tree for a hypothetical classification problem.

Three descriptors were available at each split point and the fractional purity measure

was used to select a descriptor at each split. As can be seen, this measure results in each

node, generated by a split, consisting mainly of a single class.

After a tree of the required size (i.e., number of nodes) has been created it can

then be used for predictive purposes by determining in which leaf node a new observa-

tion would belong, and assigning a class based on the majority class of the leaf node

or calculating a property value, by averaging the property values of the observations

contained in the leaf node.

The philosophy behind the the RF method is that the technique is able to provide

high predictive ability by averaging the predictions of a large number of individual deci-

sion trees. In other words, the RF technique is an ensemble method based on forests of

decision trees. The technique is applicable to both classification and regression. The fol-

lowing discussion presents the fundamentals of the RF technique and its use in providing

a measure of variable importance.

Since the RF method is based on decision trees, the features of the latter that

make it an attractive option in the development of predictive models also apply to

RF’s. These features include the ability to handle high-dimensional data, the ability to

ignore irrelevant variables (thus obviating the need of feature selection) and the ability

to provide some measure of interpretability. However one of the major drawbacks of the

decision tree method is its low predictive ability. Random forests, as an extension of the

27

decision tree method, exhibit a higher predictive ability coupled with other features such

as an internal measure of accuracy and a measure of variable importance.

Random forests are closely related to other tree based ensemble techniques such

as bagging,48 boosting49 and random split selection.50 The method consists of generating

an ensemble of N trees denoted by51

R = {T1(X), T2(X), . . . , TN (X)} (2.13)

where X is defined as a p-dimensional vector of descriptors. The output of this ensemble

is be denoted by

{Ŷ1, Ŷ2, . . . , ŶN} (2.14)

where Ŷi is the output of the ith tree. The predicted value reported by the random forest,

Ŷ , is then the majority vote of the N outputs (for classification) or the mean of the N

output values.

The algorithm to build the forest can be described as follows. Consider a training

set, D, of n observations and p independent variables (represented by p-dimensional

vectors). The observations can be categorical (for classification) or real valued (for

regression). A random subset of the training data is selected with replacement and a

decision tree is built using this bootstrap sample. The evolution of the decision tree is

slightly different from the original algorithm described by Breiman38 in that, at each

node m (1 ≤ m ≤ p) descriptors are selected randomly from the descriptor pool. When

m = 1 this is equivalent to random splitting and when m = p this is equivalent to

bagging.48 Using this rule to split nodes, a tree is grown to its maximal size and pruning

is not carried out. Another bootstrap sample is selected and another tree is grown. This

procedure is repeated till the requisite number of trees (N) have been grown. Fig. 2.8

summarizes the steps involved in the creation of a random forest model as a flowchart.

The fact that subsets of the dataset are used to build the forest allows us to

use the observations not used during building (termed out-of-bag or OOB observations)

to obtain a measure of predictive performance. This measure is termed the out-of-bag

estimate52 and can be considered a parallel cross validation since it is estimated for each

training step. The OOB estimate is obtained by considering the OOB part of the data

for the ith tree, denoted by DOOB
i

. The ith tree is used to predict the property of the

observations in DOOB
i

. It has been shown36 that on average each tree uses approximately

1 − e−1 = 2/3 of the whole dataset and hence the size of DOOB
i

, is on average 1/3 of

the dataset. This implies that each observation will be in the OOB data about 1/3 of

28

the time. Consequently, the OOB estimates can be aggregated to provide an ensemble

prediction for each observation. In the case of regression, this result is an out-of-bag

estimate of the mean square error (MSE) that can be used to approximate the MSE for

the entire ensemble of trees and can be written as51

MSE ≈ MSEOOB =
1
n

n∑
i=1

[
Ŷ OOB(Xi)− Yi

]2
(2.15)

It has been shown51 that the MSE obtained by Eq 2.15 agrees well with the results of a

k-fold cross validation scheme.

In addition to obtaining performance estimates of the random forest, the OOB

dataset also allows us to obtain a measure of importance of the descriptors in the pool

supplied to the algorithm. The measure is obtained by first calculating the predicted

values for the OOB data for a given tree. Next, each descriptor in the OOB dataset is

individually scrambled and predictions are made on the scrambled OOB dataset, for each

scrambled descriptor. This procedure is repeated for all the trees grown in the forest.

After training is complete, the overall OOB estimates (MSE) for the unscrambled and

scrambled sets can be evaluated using Eq 2.15. The importance of the jth descriptor is

then given by

Importancej = MSE −MSEj (2.16)

where MSE represents the OOB estimate for the unscrambled data and MSEj rep-

resents the OOB estimate for the datasets in which the jth descriptor was scrambled.

This procedure allows the ranking of the descriptor used in the random forest in order

of relative importance. Descriptors that play a more important role in the predictive

ability of the model will have a higher value of importance compared to descriptors that

play an insignificant role. The importance measure for each descriptor can be plotted

to allow easy visual inspection as shown in Fig. 2.9. From this figure it is clear that

SURR-5 is significantly more important than the other descriptors owing to its large

separation on the X axis. These plots are used in Chapter 7 to provide a comparison

with interpretation schemes for other types of models.

2.3.2 k-Nearest Neighbor Algorithm

The k-nearest neighbor (kNN) method is very simplistic in nature and assumes

that observations that are close in the space of the predictor variables will be close to

each other in the space of the response variable. This method can be applied to both

29

regression as well as classification problems, though when faced with high-dimensional

data, kNN regression does not perform very well.36

In the case of regression the kNN fit for the ith observation is defined as

Ŷ (xi) =
1
k

∑
xj∈Nk(x)

yj (2.17)

where Nk(x) is the set of k points closest to xi, that is, the neighborhood of xi. Eq. 2.17

simply averages the observed values of the k nearest neighbors of xi to obtain the pre-

dicted response for this observation. From the above discussion, the first step of the kNN

method is to obtain the neighborhood for a given observation. This implies the choice

of a distance metric. The most common metric used is the Euclidean distance, defined

as

dij = ||xi − xj || (2.18)

where xi and xj are the independent variables for the query observation and prospective

neighbor respectively. Other possibilities include the Manhattan distance and Maha-

lanobis distance though the choice of distance metric does not appear to affect the

results significantly.53

In the case of kNN classification, the class of a query observation is simply the

majority class of its nearest neighbors. Fig. 2.10 shows a schematic diagram of the work-

ing of the kNN algorithm. In the figure, the central white point is the query point and

the points connected to it correspond to its three nearest neighbors. In the case of kNN

regression, the property of the query point would be the average of the property of the

nearest neighbors. In the case of kNN classification, the class of the query point would

be the majority class of the nearest neighbors and in this case, the query point would be

classified as blue. As opposed to kNN regression, kNN classification performs reasonably

well when faced with high-dimensional data. This is due to the trade off between bias

and variance. It has been shown54 that in the case of a 1-nearest neighbor classifier the

asymptotic error rate is never more than twice the Bayes error rate. It is evident that

this observation considers the asymptotic region and hence assumes that the bias of the

nearest neighbor rule is zero. In real problems (especially high-dimensional cases) this

is not always the case and the bias term can be substantial. Nearest neighbor classifi-

cation implicitly assumes that the class probabilities are approximately uniform within

the neighborhood of the query point. In the case of high-dimensional datasets, this as-

sumption does not necessarily hold and in fact, when the number of dimensions is high

30

the class probabilities might vary significantly in a certain direction. One approach to

alleviating this problem is the use of adaptive metrics which modify the distance metric

so that class probabilities in the resultant neighborhoods do not vary significantly. Ex-

amples of such adaptive nearest neighbor methods include that proposed by Friedman55

and the discriminant adaptive nearest neighbor (DANN) rule described by Hastie et al.56

Given a suitable distance metric a kNN algorithm only requires that a suitable

value of k be chosen. In many cases setting k to 1 provides reasonably good predictive

performance for classification purposes. In general, optimal values of k are obtained via

trial and error. A more systematic approach is to use a cross-validation scheme to obtain

the best value of k for a given dataset. One example of this approach has been described

by Shen et al.57 in which the value of k along with the selection of variables used for

classification were optimized simultaneously.

2.4 Optimization Methods

Optimization is a fundamental topic in QSAR modeling. In this context, there

are two main applications of optimization techniques. The first involves the optimization

of parameters for a model such as the weights and biases in a feed-forward neural net-

work described previously. The other area where optimization plays an important role

is in the selection process. Here, selection can mean the selection of compounds from a

library or design of a library from various components58–60 or it can mean the selection

of descriptors to build models with. In this section we concentrate on the latter form of

selection. As will be described in Chapter 3, the model building process begins with the

generation of a large number of descriptors. In the interests of parsimony, our goal is to

use the minimum number of descriptors to develop a good predictive model. Thus, we

must select good subsets of descriptors. The definition of good depends on the modeling

technique used to build the models after descriptor selection and will be discussed in the

following sections. Though statistical methods exist to perform descriptor selection (or

variable selection as it is termed in the statistical literature) such as stepwise regression,

backward elimination and forward selection, these methods are generally restricted to

linear regression models. However, a more important reason for avoiding these methods

is due to a number of inherent drawbacks which include falsely narrow confidence inter-

vals,61 incorrect p-values, biased regression coefficients that require shrinkage,62 severe

problems with collinearity63 and so on. Furthermore backward or forward selection algo-

rithms by their nature will ignore certain combinations of variables (since in the former

31

case variables removed from consideration are not considered again and in the latter case

variables are based on the current subset that has already been selected). Owing to these

restrictions we avoid statistical selection algorithms and instead focus on optimization

algorithms to carry out descriptor selection.

Optimization methods can be divided into two broad classes: deterministic and

stochastic. Examples of deterministic methods include the BFGS algorithm1–4 and the

Nelder-Mead simplex algorithm.5 Examples of stochastic methods include the genetic

algorithm6 and the simulated annealing algorithm.9 The choice of method largely de-

pends on the nature of the solution space. Deterministic methods are preferred in cases

where there is known to be one global minimum in the solution space and when the

dimensionality of the solution space is relatively small. Multiple local minima can exist

and various improvements to the standard algorithms are available to overcome this sit-

uation. When the solution space is very large (or possibly combinatorial in nature) and

may have multiple minima but no distinct global minimum, a stochastic algorithm which

is able to effectively sample the solution space is the preferred option. This does not

imply that a stochastic method cannot be used in the former case. Genetic algorithms

have been used to optimize the weights and biases in neural networks.64,65 In the various

applications discussed in this work parameter optimization has been carried out using

deterministic methods whereas descriptor selection has been carried out using stochastic

methods. The following sections describe the principles underlying the genetic algorithm

and simulated annealing and details of their implementations.

2.4.1 Genetic Algorithms

A genetic algorithm is a member of the class of optimization algorithms known

as evolutionary algorithms, which utilize the concepts of biological evolution to develop

efficient optimization strategies.8 GA’s have been used widely in the field of QSAR

modeling,66–68 cheminformatics59,69,70 and chemometrics.71–74 The application of genetic

algorithms in this work are focused on their use as efficient tools to search large di-

mensional spaces. More specifically, one application of GA’s in QSAR modeling is to

search a descriptor space to find optimal subsets of descriptors that can be used to build

predictive models. Fig. 2.11 shows a flowchart of the generic genetic algorithm and this

section describes the steps in detail.

As mentioned above, a GA is based on the principles of evolution. As a result

much of the terminology from the field of biological evolution has been adapted for

32

use in the field of genetic algorithms. Thus we define an individual as consisting of a

chromosome and an associated fitness value. When using a GA for descriptor selection,

the chromosome is simply a subset of descriptors (of user specified length) chosen from

the descriptor pool that is being searched. A population is defined as a collection of

individuals. The first step of the GA is to initialize the population. This is achieved

by randomly generating a user specified number (usually 40 to 50) of descriptor subsets

of user specified size. Each descriptor subset is used to build a model (which can be a

linear regression model or a CNN model). The root mean square error (RMSE) for each

model is used to determine the fitness of the individual. The implementation used in

this work does not use the raw RMSE value but instead uses a linearly scaled form. The

actual form of the fitness function depends on the nature of the model to be developed.

For linear models the fitness for the ith individual in the population is defined as

Fitnessi =
(

2− RMSEi

RMSEavg

)−1

(2.19)

where RMSEi is the RMSE for the ith individual and RMSEavg is the average RMSE for

the whole population. In the case of CNN models, the fitness function is defined by the

cost function described in Section 2.2.1. Once the fitness for each individual has been

evaluated, the population is ranked.

The next step is to create a child population. First a mating list is created, which

is of the same size as the current population. Those individuals with fitness greater

than the population average (which from Eq. 2.19 is greater than 1.0) are automatically

placed in the mating list. By definition, this will fill up half of the available slots. The

remaining slots in the mating list are filled by using a roulette wheel selection procedure6

to select individuals from the current population. Once the mating list is created a child

population is then generated by successively selecting two individuals from the mating

list at random and applying genetic operations.

The first operation is termed crossover, and involves the the swapping of portions

of the chromosomes of a pair of individuals. The GA literature describes a number of

variations of the crossover operation.6 The current implementation restricts itself to the

single point crossover. In this type of crossover a split point is chosen in the descriptor

subset. Then the descriptors from one side of the split point in the two individuals

are swapped to give rise to two new individuals. This operation is shown graphically

in Fig. 2.12. The figure represents a crossover performed on two individuals having a

chromosome (descriptor subset) of length 5. The split point is chosen at the fourth

33

descriptor and the descriptors on the left of the split point are swapped resulting in two

new individuals. The goal of crossover is to generate new individuals that will have the

good features of the parent individuals. That is, if two individuals have a high fitness this

implies that certain parts of their chromosomes (i.e., certain descriptors) are responsible

for their fitness. By combining a portion of the chromosomes of two fit individuals, we

expect that the children will exhibit equal if not better fitness.

The second genetic operation is termed mutation and is performed on a single

child individual. It should be noted that mutation is not performed on all individuals

in a population but is carried out only 5% of the time, mirroring the low frequency

of mutation in biological evolution. In a genetic algorithm the mutation operation is

performed by randomly changing a part of the chromosome of an individual. That is,

a random descriptor within an individual is replaced with a randomly chosen descriptor

from the descriptor pool. This is shown schematically in Fig. 2.13. The goal of the

mutation operation is two-fold. First, random mutations prevent the algorithm from

getting stuck in a local minimum and second, mutations prevent the phenonemon of

premature convergence. This occurs when the algorithm creates very similar (or even

identical) individuals whose fitness is high, but not necessarily optimal. The mutation

operation can also be viewed as a method to maintain diversity within a population,

though this does not entirely solve the problem of premature convergence as noted by

Goldberg.6

With the application of these two operations we end up with a second, child,

population. The fitness of the individuals in this population are evaluated and the

individuals ranked. The second generation population is then created by randomly

selecting individuals from the the top 50% of the previous population and the child

population. Finally, if the best model in the child population is of lower fitness than the

best model from the previous population, the best model from the previous population is

kept in the second generation. With the formation of the second generation population,

the whole process is repeated. This continues for a user specified number of cycles

(usually 1000) and at the end the top ranked individuals (i.e., the top ranked descriptor

subsets and associated RMSE values) are reported to the user.

34

2.4.2 Simulated Annealing

Simulated annealing is a generalization of the Metropolis Monte Carlo method75

to optimization problems. The original method was devised as an efficient way to eval-

uate the Boltzmann average of a given atomic or molecular property. The method was

extended by Kirkpatrick et al.9 to determine the most stable state of a system. This

modification was based on the physical phenonemon of annealing in which a melt (such

as a glass or metal) is initially at a high temperature and then allowed to cool slowly,

such that at any time, the melt is in thermal equilibrium. As the temperature is de-

creased the atoms in the melt will achieve increasingly ordered states and when the final

temperature (say, room temperature) is reached the configuration of the atoms should

be that of the most stable state.

This modification of the Metropolis method is easily extendable to combinatorial

optimization problems and more specifically for QSAR, feature selection. In terms of

an optimization problem, the temperature term in the simulated annealing algorithm

effectively controls the size of the solution space and the cooling schedule narrows the

space over time, allowing the algorithm to reach the global minimum of the solution

space.

The original algorithm described by Metropolis et al. considered an initial thermo-

dynamic configuration of a system with energy E at a temperature T . This configuration

was perturbed and the change in energy, ∆E, was evaluated. If the change in energy was

negative the new configuration was accepted and if positive, the configuration was ac-

cepted with a probability equal to the Boltzmann factor, exp(−∆E/kT). This procedure

was repeated a number of times to obtain sampling statistics and then the temperature

was reduced by a small amount. The whole procedure was then repeated till the final

temperature was achieved. In terms of a feature selection problem, the thermodynamic

configuration is replaced by a set of descriptors and the energy is replaced by a cost

function which in the case of the studies presented in this work is either a linear regres-

sion routine or CNN routine. Thus, the algorithm starts out with a random descriptor

subset (configuration), say x0, selected from the descriptor pool and the value of the

cost function (which is the RMSE for linear models and Eq. 2.6 for CNN models) for

this descriptor subset is calculated, say C(x0). Next, the descriptor subset is perturbed

by randomly replacing a single descriptor by a randomly selected descriptor from the

pool. The value of the cost function for this new configuration is then determined, say

C(x). If C(x) < C(x0) the new configuration replaces the previous one and we repeat

35

the perturbation process. If C(x) ≥ C(x0) then a detrimental step has been taken.

The new configuration is accepted with a probability equal to the Boltzmann acceptance

probability, P . If the new configuration is still not accepted, the algorithm replaces the

new configuration with the old one and returns to the perturbation step. The working

of the algorithm is shown schematically in Fig. 2.14. The whole procedure results in

a single, low cost descriptor subset. The algorithm is then repeated with a different

random descriptor subset to build up a pool of low cost descriptor subsets which can

then be investigated in more detail.

The simulated annealing algorithm used in this work is an implementation of

generalized simulated annealing described by Bohachevsky.76,77 This method differs

from the classical simulated annealing algorithm by introducing a step size ∆r and a

normalized n-D vector v. The vector v corresponds to a set of random perturbations of

the current configuration x. v is obtained by generating a set of random numbers from

N(0, 1) denoted by ui, i = 1 . . . n and evaluating

vi =
ui∑n

i=1
u2

i

(2.20)

The new configuration y is then given by

y = x + ∆rv (2.21)

which lies in the neighborhood of x. The second modification is that the acceptance

probability P , approaches zero as the configuration approaches the global optimum.

This gives P the form

P = exp
(
−β

C(y)− C(x)
C(x)− Cest

)
(2.22)

where C(x) and C(y) are the values of the cost function for the configurations x and y

and Cest is the estimated global optimum. β is a parameter that controls the cooling

schedule and corresponds to the effective temperature term, kT , in the Boltzmann factor.

The choice of β is important as too small a value will result in a random walk and too

large a value will cause the algorithm to converge to a local minimum. β begins with a

small value which allows detrimental steps to be taken relatively frequently. This allows

the algorithm to explore a larger space. As the algorithm progresses, β is increased

making the probability of acceptance of a detrimental step lower, thus shrinking the

search space. To determine the initial value of β the algorithm is run for a set number

of iterations and β is adjusted until the relation 0.5 < P̄ < 0.9 (where P̄ is the mean

36

probability of a detrimental step) is achieved. In the case of the current implementation,

the algorithm is allowed to run for 1000 iterations and for each detrimental step, the

equation

P = exp (−β∆C) (2.23)

is solved assuming P = 0.8. Here ∆C is the difference in the value of the cost function

for the detrimental configuration and the previous configuration. At the end of the

iterations the average value of β is taken as the starting value for the actual run. To

prevent premature convergence, β is multiplied by 2 every 100 iterations for a maximum

of 50000 iterations. If detrimental steps occur more than 900 times in a row β is reset

to the starting value and if this occurs twice in a row the algorithm exits.

2.5 Conclusions

In this section I have presented the underlying details of the modeling and op-

timization algorithms used in this work. For each class of modeling technique or opti-

mization technique described here, there is a number of alternatives that have not been

discussed. These include variants of the fundamental neural network model such as the

probabilistic neural network and various types of linear modeling techniques such as

ridge regression, linear discriminant analysis and so on. The QSAR literature has nu-

merous applications of these and other modeling techniques. The field of optimization is

certainly much more detailed than has been described in this chapter and, the literature

describes numerous algorithms and variants that are suited for both general use as well

as for special cases. However, the focus of this work is not on the modeling or optimiza-

tion techniques themselves. Rather, the goal of this work is to develop and implement

techniques that allow us to obtain meaningful knowledge from data using predictive or

descriptive models. The methods described in this chapter allow us to achieve the first

step, namely, the development of the model itself. Subsequent chapters describe various

methods that have been developed to ensure validity and provide interpretability.

37

Fig. 2.1. A schematic diagram of a 3-layer, fully connected feed-forward
neural network

Fig. 2.2. A more detailed view of a single hidden layer neuron. The xi’s represent
the output value of the neurons in the preceding layer and wi’s correspond to the
weights for the connections between this neuron and those in the preceding layer.
b represents the bias term for this neuron.

38

Fig. 2.3. A plot of the signmoidal transfer function used in the imple-
mentation of the neural network algorithm in this work

39

Fig. 2.4. A plot showing the variation of training set and cross-validation
set RMSE with training cycle. The global minimum of the cross-validation
curve indicates the training cycle at which the optimal weights and biases
occur

40

Fig. 2.5. A clustering of the first 5000 compounds from the NCI AIDS
test dataset31 obtained using a SOM. The grid dimensions are 10 × 10
and the neurons are color coded based on the number of compounds that
map to them. Thus black neurons have no members from the training set
mapped to them whereas the white neurons have the maximum number
of observations mapped to them.

41

Fig. 2.6. A flowchart illustrating the recursive partitioning algorithm
used to generate a decision tree

42

Fig. 2.7. A schematic diagram of a decision tree for a hypothetical clasification
problem. The purity measure used to grow the tree was defined to be the fraction of
a single class in the nodes created by a prospective split. Three binary descriptors,
X1, X2 and X3 were available for splitting and the Di’s correspond to each node.
Nodes D4, D5, D6 and D7 represent leaf nodes.

43

Fig. 2.8. A flow chart describing the working of the random forest algo-
rithm

44

MDEN−23

2SP3−1

RNHS−3

WNHS−2

THWS−1

WTPT−5

MOLC−8

RNH−3

WTPT−3

SURR−5

0 2 4 6 8 10 12
Importance

Fig. 2.9. A random forest descriptor importance plot

45

Fig. 2.10. A schematic diagram of the kNN algorithm

46

Fig. 2.11. A flow chart describing the working of a genetic algorithm

47

Fig. 2.12. A schematic diagram of the single point crossover operation. The
grids on the left represent the parents and the grids on the right represent the
children formed after crossover. The portion of the chromosomes to the left of
the split point are swapped.

Fig. 2.13. A schematic diagram of the mutation operation

48

Fig. 2.14. A flow chart describing the working of a simulated annealing
algorithm

49

References

[1] Broyden, C. The Convergence of a Class of Double-Rank Minimization Algorithms

2, The New Algorithm. J. Inst. Math. Applic. 1970, 6, 222–231.

[2] Fletcher, R. A New Approach to Variable-Metric Algorithms. Comput. J. 1970, 13,

317–322.

[3] Goldfarb, D. A Family of Variable-Metric Algorithms Derived by Variational Means.

Math. Comput. 1970, 24, 23–26.

[4] Shanno, D. Conditioning of Quasi-Newton Methods for Function Minimization.

Math. Comput. 1970, 24, 647–656.

[5] Nelder, J.; Mead, R. A Simplex Method for Function Minimization. Comput. J.

1965, 7, 308–315.

[6] Goldberg, D. Genetic Algorithms in Search, Optimization & Machine Learning;

Addison-Wesley: Reading, MA, 2000.

[7] Holland, J. Genetic Algorithms. Sci. Am. 1992, 267, 66–72.

[8] Forrest, S. Genetic Algorithms: Principles of Natural Selection Applied to Compu-

tation. Science 1993, 261, 872–878.

[9] Kirkpatrick, S.; Gelatt, J. C.; Vecchi, M. Optimization by Simulated Annealing.

Science 1983, 220, 671–680.

[10] Norinder, U. Single and Domain Mode Variable Selection in 3D QSAR Applications.

J. Chemom. 1996, 10, 95–105.

[11] Golbraikh, A.; Tropsha, A. Beware of q2. J. Mol. Graph. Model. 2002, 20, 269–276.

[12] Neter, J. Applied Statistics; Allyn and Bacon Inc.: Boston, MA, 1988.

[13] Barnett, V. Probability Plotting Methods and Order Statistics. Appl. Stat. 1975,

24, 95–108.

[14] Rousseeuw, P.; Leroy, A. Robust Regression and Outlier Detection; Wiley Series in

Probability and Mathematical Statistics John Wiley & Sons: Hertfordshire, Eng-

land, 1987.

50

[15] Gupta, A.; Park, S.; Lam, S. Generalized Analytic Rule Extraction for Feedforward

Neural Networks. IEEE Transactions on Knowledge and Data Engineering 1999,

11, 985–991.

[16] Haykin, S. Neural Networks; Pearson Education: Singapore, 2001.

[17] Ripley, B. Pattern Recognition and Neural Networks; Cambridge University Press:

Oxford, 1996.

[18] Kohonen, T. Self Organizing Maps; volume 30 of Springer Series in Information

Sciences Springer: Espoo, Finland, 1994.

[19] Hornik, K.; Stinchcombe, M.; White, H. Universal Approximation of an Unknown

Mapping and its Derivation Using Multilayer Feedforward Networks. Neural Net-

works 1990, 3, 551–556.

[20] Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks are

Universal Approximators. Neural Networks 1989, 2, 35–366.

[21] Livingstone, D.; Manallack, D. Statistics Using Neural Networks: Chance Effects.

J. Med. Chem. 1993, 36, 1295–1297.

[22] Wessel, M. Computer Assisted Development of Quantitative Structure Property Re-

lationships and Design of Feature Selection Routines, Thesis, Department of Chem-

istry, Pennsylvania State University, 1997.

[23] Kalelkar, S.; Dow, E. R.; Grimes, J.; Clapham, M.; Hu, H. Automated Analysis

of Proton NMR Spectra from Combinatorial Rapid Parallel Synthesis Using Self-

Organizing Maps. J. Comb. Chem. 2002, 4, 622–629.

[24] Hoehn, F.; Lindner, E.; Mayer, H. A.; Hermle, T.; Rosenstiel, W. Neural Net-

works Evaluating NMR Data: An Approach To Visualize Similarities and Relation-

ships of Sol-Gel Derived Inorganic-Organic and Organometallic Hybrid Polymers.

J. Chem. Inf. Comput. Sci. 2002, 42, 36–45.

[25] Chen, L.; Gasteiger, J. Knowledge Discovery in Reaction Databases: Landscaping

Organic Reactions by a Self Organizing Neural Network. J. Am. Chem. Soc. 1997,

119, 4033–4042.

[26] Bienfait, B. Applications of High Reolution Self Organizing Maps to Retrosynthetic

and QSAR Analysis. J. Chem. Inf. Comput. Sci. 1994, 34, 890–898.

51

[27] Rose, V.; Croall, I.; Macfie, H. An Application of Unsupervised Neural Net-

work Methodology Kohonen Topology-Preserving Mapping to QSAR Analysis.

Quant. Struct.-Act. Relat. 1991, 10, 6–15.

[28] Anzali, S.; Barnickel, G.; Krug, M.; Sadowski, J.; Wagener, M.; Gasteiger, J.;

Polanski, J. The Comparison of Geometric and Electronic Properties of Molecular

Surfaces by Neural Networks: Application to the Analysis of Corticosteroid-Binding

Globulin Activity of Steroids. J. Comp. Aid. Molec. Des. 1996, 10, 521–534.

[29] Chen, L.; Gasteiger, J. Knowledge Discovery in Reaction Databases: Landscaping

Organic Reactions by a Self Organizing Neural Network. J. Am. Chem. Soc. 1997,

119, 4033–4042.

[30] Espinosa, G.; Arenas, A.; Giralt, F. An Integrated SOM Fuzzy ARTMAP Neural

System for the Evaluation of Toxicity. J. Chem. Inf. Comput. Sci. 2002, 42, 343–

359.

[31] Nicklaus, M. “http://cactus.nci.nih.gov/DownLoad/AID2DA99.sdz”, 1999.

[32] Breiman, L. Statiscal Modeling: Two Cultures. Statistical Science 2001, 16, 199–

231.

[33] Sutton, R.; Barto, A. Reinforcement Learning; MIT Press: Cambridge, 1999.

[34] Witten, W.; Frank, E. Data Mining; Morgan Kaufman: San Francisco, 2000.

[35] Christianini, N.; Shawn-Taylor, J. An Introduction to Support Vector Machines;

Cambridge University Press: Cambridge, 2002.

[36] Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning;

Springer: New York, 2003.

[37] Kohonen, T. Self-Organization and Associative Memory; Springer-Verlag: Berlin,

1989.

[38] Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regresion

Trees; CRC Press: Boca Raton, FL, 1984.

[39] Zhang, X.; Singer, B. Recursive Partitioning in the Health Sciences; Springer: New

York, 1999.

52

[40] Shaha, A. Implications Of Prognostic Factors And Risk Groups In The Management

Of Differentiated Thyroid Cancer. Laryngoscope 2004, 114, 393–402.

[41] Schuurmann, G.; Aptula, A. O.; Kuhne, R.; Ebert, R. Stepwise Discrimination

between Four Modes of Toxic Action of Phenols in the Tetrahymena pyriformis

Assay. Chem. Res. Tox. 2003, 16, 974–987.

[42] Butina, D.; Gola, J. M. R. Modeling Aqueous Solubility. J. Chem. Inf. Comput. Sci.

2003, 43, 837–841.

[43] Bos, P.; Baars, B.; van Raaij, M. Risk Assessment Of Peak Exposure To Genotoxic

Carcinogens: A Pragmatic Approach. Tox. Lett. 2004, 151, 43–50.

[44] Ebert, M. P. A.; Meuer, J.; Wiemer, J. C.; Schulz, H.-U.; Reymond, M. A.; Trau-

gott, U.; Malfertheiner, P.; Rocken, C. Identification of Gastric Cancer Patients

by Serum Protein Profiling. J. Proteome Res. 2004, 3, 1261–1266.

[45] Tong, W.; Xie, W.; Hong, H.; Fang, H.; Shi, L.; Perkins, R.; Petricoin, E. Using

Decision Forest To Classify Prostate Cancer Samples On The Basis Of SELDI-TOF

MS Data: Assessing Chance Correlation And Prediction Confidence. Evironmental

Health Perspectives 2004, 112, 1622–1627.

[46] Therneau, T.; Atkinson, E. “An Introduction to Recursive Partitioning Using

the RPART Routines”, Technical Report, Department of Health Science Research,

Mayo Clinic, Rochester, Minnesota, 1997.

[47] Venables, W.; Ripley, B. Modern Applied Statistics with S; Springer: New York,

2002.

[48] Breiman, L. Bagging Predictors. Machine Learning 1996, 26, 123–140.

[49] Breiman, L. Randomizing Outputs to Increase Prediction Accuracy. Machine Learn-

ing 2000, 40, 229–242.

[50] Dietterich, T. An Experimental Comparison of Three Methods for Constructing En-

sembles of Decision Trees: Bagging, Boosting and Randomization. Machine Learn-

ing 2000, 40, 139–167.

[51] Svetnik, V.; Liaw, A.; Tong, C.; Culberson, C.; Sheridan, R.; Feuston, B.

Random Forest: A Classification and Regression Tool for Compound Classification

and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 42, 1947–1958.

53

[52] Breiman, L. “Out-of-bag estimation”, Technical Report, Department of Statistics,

University of California, Berkeley, 1996.

[53] Guha, R. Unpublished data.

[54] Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. Proc. IEEE Trans.

Inform. Theory 1967, IT-11, 21–27.

[55] Friedman, J. “Flexible Metric Nearest Neighbor Classification”, Technical Report,

Stanford University, 1994.

[56] Hastie, T.; Tibshirani, R. Discriminant Adaptive Nearest Neighbor Classification.

IEEE Pattern Recognition and Machine Intelligence 1996, 18, 607–616.

[57] Shen, M.; Xiao, Y.; Golbraikh, A.; Gombar, V.; Tropsha, A. Development and

Validation of k-Nearest Neighbor QSPR Models of Metabolic Stability of Drug

Candidates. J. Med. Chem. 2003, 46, 3013–3020.

[58] Gillet, V.; Khatib, W.; Willet, P.; Gleming, P.; Green, D. Combinatorial Library

Design Using a Multiobjective Genetic Algorithm. J. Chem. Inf. Comput. Sci. 2002,

42, 375–385.

[59] Le Bailly de Tilleghem, C.; Beck, B.; Boulanger, B.; Govaerts, B. A Fast

Exchange Algorithm for Designing Focused Libraries in Lead Optimization.

J. Chem. Inf. Comput. Sci. 2005, ASAP, XXX.

[60] Agrafiotis, D. K.; Rassokhin, D. N. Design and Prioritization of Plates for High-

Throughput Screening. J. Chem. Inf. Comput. Sci. 2001, 41, 798–805.

[61] Altman, D. G.; Andersen, P. K. Bootstrap investigation of the stability of a Cox

regression model. Statistics in Medicine 1989, 8, 771–783.

[62] Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. Royal Stat. Soc.

B 1996, 58, 267–288.

[63] Mantel, N. Why Stepdown Procedures in Variable Selection. Technometrics 1970,

12, 621–625.

[64] Hinnela, J.; Saxen, H.; Pettersson, F. Modeling of the Blast Furnace Burden

Distribution by Evolving Neural Networks. Ind. Eng. Chem. Res. 2003, 42, 2314–

2323.

54

[65] Moisa, T.; Ontanu, D.; Dediu, A. Speech Synthesis Using Neural Networks Trained

by an Evolutionary Algorithm; volume 2074 of Lecture Notes in Computer Science

Springer-Verlag GmbH: New York, 2001.

[66] Mattioni, B. E.; Jurs, P. C. Prediction of Glass Transition Temperatures from

Monomer and Repeat Unit Structure Using Computational Neural Networks.

J. Chem. Inf. Comput. Sci. 2002, 42, 232–240.

[67] Guha, R.; Jurs, P. C. Development of Linear, Ensemble, and Nonlinear Models

for the Prediction and Interpretation of the Biological Activity of a Set of PDGFR

Inhibitors. J. Chem. Inf. Comput. Sci. 2004, 44, 2179–2189.

[68] Guha, R.; Jurs, P. The Development of QSAR Models To Predict and Interpret

the Biological Activity of Artemisinin Analogues. J. Chem. Inf. Comp. Sci. 2004,

44, 1440–1449.

[69] Venkatraman, V.; Dalby, A. R.; Yang, Z. R. Evaluation of Mutual Information and

Genetic Programming for Feature Selection in QSAR. J. Chem. Inf. Comput. Sci.

2004, 44, 1686–1692.

[70] Wright, T.; Gillet, V. J.; Green, D. V. S.; Pickett, S. D. Optimizing the Size

and Configuration of Combinatorial Libraries. J. Chem. Inf. Comput. Sci. 2003,

43, 381–390.

[71] Goicoechea, H. C.; Olivieri, A. C. Wavelength Selection for Multivariate Calibration

Using a Genetic Algorithm: A Novel Initialization Strategy. J. Chem. Inf. Com-

put. Sci. 2002, 42, 1146–1153.

[72] Hervás, C.; Silva, M.; Serrano, J. M.; Orejuela, E. Heuristic Extraction of Rules in

Pruned Artificial Neural Networks Models Used for Quantifying Highly Overlapping

Chromatographic Peaks. J. Chem. Inf. Comput. Sci. 2004, 44, 1576–1584.

[73] Leardi, R. Genetic Algorithms in Chemometrics and Chemistry. J. Chemo. 2001,

15, 559–569.

[74] Levine, B.; Moores, A. Genetic Algorithm in Analytical Chemistry. Anal. Lett.

1999, 32, 433–445.

[75] Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E. Equation of

State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–

1092.

55

[76] Bohachevsky, I.; Johnson, M.; Stein, M. Generalized Simulated Annealing for

Function Optimization. Technometrics 1986, 28, 209–217.

[77] Sutter, J.; Kalivas, J. Comparison of Forward Selection, Backward Elimination and

Generalized Simulated Annealing for Variable Selection. Microchemical J. 1993, 47,

60–66.

