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Chapter 1

Introduction

1.1 To Calculate or Predict?

Until recently advances in medicinal and pharmaceutical chemistry depended on

a trial and error process aided by intuition. Though the properties that would indicate

a certain molecule as a drug candidate were known, it was not really feasible to inves-

tigate large numbers of molecules for these types of properties. Of course, the nature

of these properties would be represented by structural features of a molecule and thus

examination of certain motifs provided a direction for experimental investigations.

The problem with this approach is that it does not always lead to an understand-

ing of why a molecule behaves as a drug against its target or why it does so. Furthermore,

given a series of compounds it is not always feasible to investigate experimentally which

members of the series would be more potent or less toxic. As a result, though medicinal

chemistry has resulted in a series of life saving drugs, the process has traditionally been

slow and tedious, and in many cases advances have been due to serendipity rather than

scientifically guided investigation.

In an ideal world one would be able to take a 3-D molecular structure and calculate

the required properties. This utopian goal has a number of problems associated with it.

First, what type of properties are to be calculated? Certain intrinsic physical properties

can be calculated using ab initio quantum mechanical computation techniques. Exam-

ples include dipole moments, charges and heats of formation. Though these are certainly

useful, they do not provide much insight into drug-like properties such as potency and

bioavailability. In addition, for large collections of molecules, ab initio techniques be-

come very time consuming. Semi-empirical quantum mechanical methods alleviate the

intensive nature of these calculations, but we are still faced with the restriction on the

types of properties that can be calculated. Second, the drug-like activity of a molecule is

intimately related to the target it is supposed to interact with. Targets generally involve

some type of protein to which the putative drug will bind. Thus when considering the

activity of a drug, we cannot simply consider the properties of the drug molecule itself.

That is, the nature of the interaction between the drug and target must be investigated to
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understand fully the activity of a drug. However, ab initio and semi-empirical techniques

have traditionally not been suited for the modeling of large protein systems. Though

recent advances in linear scaling1,2 and hybrid techniques3,4 have expanded the purview

of quantum mechanical methods to systems containing tens of thousands of molecules,

these methods are still not efficient enough to model thousands or millions of molecular

structures, and their associated targets, at a time. Third, though the interactions of a

drug with its target are certainly important, the drug must be absorbed by cells and the

also metabolized and excreted from the body. Thus absorption properties, the nature of

the metabolites and other characteristics must also be considered. Clearly, these are very

complex properties that involve interactions with a large number of cellular processes.

Modeling these quantum mechanically is nearly impossible.

The above discussion illustrates two fundamental problems. It is not feasible to

calculate from theory all the properties of a drug molecule that would help us understand

its activity and its utility, and we want to be able to analyze large sets of molecules for

these properties.

Why do we need to analyze large sets of molecules? The reason for this is closely

tied to the nature of drug discovery in recent years. The drug discovery process is time

consuming and expensive. Often it can take 10 to 15 years for a drug to reach the market

from the laboratory. Given this situation, it is important that a company select the

proper compound for study. Combined with the results from high throughput screens5

and in-house libraries, this can mean having to select tens or hundreds of compounds

from a collection of millions. Furthermore, the ability to generate an arbitrary number

of unique chemical structures in silico, to create virtual libraries, supplants the actual

compounds that a company might have synthesized in its physical collection. Clearly,

testing each compound libraries (virtual or real) for drug-like properties is out of the

question. As we have seen above, calculating properties for collections of this size is either

not feasible or impossible. The question thus comes down to this: how can we calculate

arbitrary properties of hundreds of thousands of molecules rapidly and accurately? The

short answer is that we avoid the calculation step completely and instead predict a

property of a set molecules based on a model derived from the measured values of that

property for a small subset.
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1.2 Origins of QSAR

The predictive approach is essentially a statistical methodology and is known as

the development of quantitative structure-activity relationship (QSAR)and quantitative

structure-property relationship (QSPR) models, first described by Hansch6,7 and Free

et al.8 In general, the term QSPR refers to the case where we are considering physical

properties and QSAR refers to the situation where we are considering biological activities.

However, in this work the term QSAR is used to include both cases.

Though Hansch was the first worker to define the term QSAR, A.F.A Cros, in

1863, had noted that the toxicity of alcohols in mammals increased with the decrease

in water solubility.9 Workers in the 1890’s noted that toxicity of organic compounds

depended on their lipophilicity. The precursor to QSAR models were linear free energy

relationships such as the Hammett equation,10 which was originally defined as a rela-

tionship between the electronic properties of acids (and bases) and their disassociation

constants and reactivity. The equation is defined as

log
K

K0
= ρ log

K ′

K ′
0

(1.1)

where K and K ′ represent the dissociation constants for a set of substituted aromatic

acids and K0 and K ′
0

are the constants for the unsubstituted acids. ρ is the slope of the

best fit line from the model fitted to the observed constants. The term log(K ′/K ′
0
) is

denoted by σ and describes the substituents.

Hansch originally tried to develop QSAR models using the Hammett σ parameter

but this did not lead to good results. He thus considered other parameters such as the

lipophilicity and molecular size as represented by molar refractivity.

The essence of the QSAR methodology is thus developing a relationship between

an observed property and structural features of a molecule. By considering a set of

molecules, a predictive model is developed that can then be used to predict the activity

of other molecules. The key words here are “structural features”. The approach de-

pends on being able to represent the structure of a molecule in numerical form. This

is in contrast to the use of empirical parameters (σ) in the case of linear free energy

relationships. The numerical representations of molecules are termed descriptors, and

a wide variety of descriptors can be calculated. These include simple forms such as

molecular weight and atom counts or more complex types such as partition coefficients

and surface-property descriptors. Given a set of descriptors, a QSAR model can be built
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by defining a relationship between these descriptors (also known as the independent

variables) and the observed property (termed the dependent variable). The first QSAR

models, developed by Hansch, specified linear relationships. Even now, linear models are

widely used owing to their simplicity and ease of development. However, developments

in the field of statistics have produced many new methods of building predictive mod-

els. These include nonlinear regression techniques and algorithmic techniques.11 Other

fields such as pattern recognition and machine learning have also developed methods

that have been used successfully in QSAR modeling. These include neural networks and

subsequent variants,12,13 decision trees14,15 and so on. Clearly, progress in the field of

QSAR modeling is closely tied to developments in a number of fields including statistics,

computer science and mathematics.

The process of QSAR modeling is summarized in Fig. 1.1. The diagram stresses

the fact that a QSAR model is an alternate stepwise route to the calculation of molecular

properties. That is, the direct calculation of molecular properties is generally not feasible.

In addition, if we do not understand the nature of interactions that a molecule undergoes

in expressing its activity, accurate calculation of its properties is impossible. Thus, we

proceed by an indirect route, which we term the QSAR pipeline, in which we represent a

molecule in a computer understandable format, distill molecular features by calculating

molecular descriptors and then build predictive models. The important feature of the

QSAR modeling process is that it predicts molecular properties rather than calculating

them. This fact raises a number of issues such as the validity of predictions. Another

important aspect is the nature of the information that is input to the model. That is,

what types of descriptors should the model use, given that we can calculate thousands

of them. This is the problem of feature selection. Finally, the model predicts molecular

properties based on information present in the dataset that it has encoded. It is thus

important to be able to extract the encoded information from the model, and this is the

topic of interpretability. These issues are discussed later in this thesis.

Though the above discussion has focused on drug molecules, the QSAR method-

ology is certainly not restricted to these types of molecules. In fact a QSAR model can

be built to predict any type of physical property of biological activity, given a set of

observations and molecular structures. Examples of the prediction of physical properties

include boiling points,16–18 aqueous solubility,19,20 glass transition temperatures21 and ion

mobility.22 In the area of biological activities QSAR models have been developed to pre-

dict genotoxicity,23–25 carcinogenicity26,27 and mutagenicity.28,29 Furthermore, the use of

QSAR models is not restricted to their role in screening large libraries of compounds.
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In some cases a series of compounds may be synthesized and assayed. The development

of a QSAR model for these compounds would provide the synthetic chemist some idea

of what types of compounds could be synthesized to exhibit better activity. In other

cases, the structural features highlighted by a QSAR model can provide insight into the

mode of action of a drug molecule, which might be otherwise difficult to ascertain by

experimental means.

1.3 QSAR Methodologies

QSAR methodologies can be broadly divided into three groups. First, 2-D method-

ologies do not consider the 3-D structure of a molecule directly. Instead, the molecule

is represented by a set of molecular descriptors, numerical values characterizing various

aspects of molecular structure. Together with the observed activity, a predictive model

is built. It should be noted, that even though some descriptors are based on 3-D coordi-

nates, the method as a whole considers only the observed property and the descriptors,

and hence is 2-D in nature. The ADAPT software suite implements the 2-D QSAR

methodology.

The second type of methodology is 3-D in nature and is exemplified by the

CoMFA30 approach. In this case, the 3-D structure of the molecule is the object of

study. The molecule is aligned on a grid and various properties are evaluated at a set of

grid points. Clearly, this type of approach has many advantages over the more simplistic

2-D methodology. The fact that the molecule is studied directly in three dimensions,

rather than being mapped to two, allows for a clearer view of the interactions between

the molecule and its target that play a role in the observed activity. However it does

require accurate alignments and only considers a single conformation of a molecule.

The 4-D QSAR methodology is an extension of the 3-D QSAR methodology

developed by Hopfinger et al.31 which considers conformational information as the fourth

dimension. Similar to the CoMFA method, 4-D QSAR starts of by defining a set of grid

points on which molecular properties will be evaluated. In addition to the grid points, the

method performs conformational ensemble sampling and uses the information obtained

to evaluate grid cell occupancies. These occupancies are then used to evaluate interaction

pharmacophore elements (IPE’s). The IPE’s together with the molecular properties are

then used to develop a predictive model.
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This work focuses on the 2-D QSAR methodology and presents investigations

carried out on certain steps of the model building process. Compared to the 3-D and 4-

D methodologies described above the 2-D approach has a number of advantages. First,

owing to the variety of molecular descriptors available, optimized coordinates are not

always required. In fact, connectivity information (in the form of SMILES strings or

an adjacency matrix) alone, can be used to develop QSAR models. As a result models

using these types of descriptors (termed topological descriptors) can be built rapidly

for very large sets of molecules. However, these types of descriptors are in general quite

abstract and so if the model is to be analyzed to extract information regarding structure-

property trends, other, more physically meaningful descriptors will generally be required.

Second, this approach avoids the alignment step and thus can be used in the absence of

experimental information regarding the binding of a molecule to its target.

The downside to the 2-D QSAR methodology is that it does not provide a detailed

answer to a number of questions regarding a molecule’s activity. That is, by representing

structural information in the form of descriptors, aspects of a molecules activity such

as its absorption properties or degradability are hidden by a layer of abstraction or not

addressed at all. Thus a molecule might be observed to have low activity. A 2-D model

may not be able to indicate whether this is due to its inability to bind to the target or

whether this is due to its inability to cross the cell membrane. The point is that, in

a 2-D QSAR model, a lot of information about various aspects of a molecule’s activity

are combined together and are not always individually apparent. Though interpretation

methods for linear QSAR models exist, they are obviously restricted to the information

encoded by the descriptors in the model. This means that though 2-D QSAR models

are certainly very useful, especially for screening purposes, they should be used in con-

junction with other types of models to fully understand the role that various structural

features play in determining the activity of a molecule.

2-D QSAR models can also be divided into two distinct groups, namely, quali-

tative and quantitative models. The former type of model, also known as classificatory

models, consider a categorical dependent variable. That is, the observed property for

each observation is represented by a label, such as toxic or non-toxic. Thus, if a dataset

is available for which an assay has been carried out indicating whether a given molecule

is carcinogenic or not, a 2-D qualitative model can be built that will predict whether

a molecule , not belonging to the set, is carcinogenic or not. These types of models

are not restricted to yes/no problems and datasets with multiple classes (say, active,

moderately active and inactive) can be modeled. The second type of 2-D QSAR models
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are referred to as quantitative (or regression) models. The function of these types of

models is to predict a numerical value for a property, for example, boiling points or IC50

values. At the same time it should be pointed out that even when the observed property

for a dataset is numeric in nature, it can be studied using qualitative models. This is

generally achieved by selecting a break point in the range of the observed values and

placing molecules whose property is above the break point in one class and the remaining

molecules in another class. With these class assignments, a classificatory model can then

be built. This thesis focuses on the development of regression models.

An important part of QSAR modeling is the use of software to create structures,

calculate descriptors and build predictive models. A number of commercial packages

provide QSAR modeling facilities, and examples include Cerius232 from Accelrys and

Strike33 from Schrodinger. These packages provide a comprehensive environment that

is linked to chemical databases and a variety of cheminformatics functionality and as a

result, encompass the whole process of model building and data analysis. Some examples

of freely available programs include PowerMV34 and the ADAPT system described in

this thesis. Other programs tend to focus on specific aspects of the QSAR model building

process. For example, a number of programs are available to calculate descriptors. Ex-

amples include Dragon,35 JOELib36 and Codessa.37 Some programs focus on calculating

a set of properties that can indicate the drug likeness of a molecule, such as metabolite

types, bioavailability and so on. An example of such a program is QikProp developed by

Jorgensen et al.38–40 It is obvious that a fundamental component of QSAR modeling is

the statistical analysis of chemical information. Thus, a number of statistical packages

can be used to perform QSAR modeling such as SAS, Splus and R.41 One problem with

these environments is that they are geared towards statistics. As a result, having access

to chemical functionality from within these statistical environments is attractive. An

example of this type of environment is the combination of R and the Chemistry Devel-

opment Kit (CDK)42 described by Guha43 allowing the user to have access to the full

statistical capabilities of R as well as the cheminformatics capabilities of the CDK.

1.4 An Outline

This section briefly outlines the various topics considered in this thesis. Chapter

2 introduces the modeling techniques that are used in this work. Though a detailed

presentation of the various algorithms and models that are used in QSAR modeling would

take up a whole book, the chapter describes the broad classes of models and algorithms
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employed in this work and focuses in the theoretical principles of some specific methods.

Chapter 3 then gives a detailed description of the general QSAR methodology that is

employed in the various studies presented in this work. Subsequent chapters represent

investigations and applications that have been carried out on specific steps of the QSAR

model building process.

Chapter 4 focuses on the set selection step. This step in the QSAR pipeline

divides the original dataset into subsets which are collectively known as QSAR sets.

These subsets are then used to build and test the QSAR model. A set selection procedure

is developed to create representative sets for the purpose of building and testing QSAR

models using a self-organized map.44 The assumption underlying this method is that if

the features of the dataset are proportionately represented in the subsets used to build

and test a QSAR model, the resultant model should exhibit better predictive ability and

should be more reliable, than models built with sets selected by random selection which

does not necessarily represent different features proportionately.

Chapter 5 then focuses on the validation step of the QSAR pipeline and describes

a technique that was developed to be able to ascertain the reliability of a QSAR when

asked to predict properties of compounds that it has never seen. The validation of QSAR

models, over and above the traditional methods, using scrambling tests and an external

prediction set, is an important topic. The ability to obtain a measure of confidence in the

predictions of a QSAR model is very important when such models are used to process

incoming data from high throughput screens or when used by a bench chemist to decide

whether to invest time and effort on the characterization of a new lead. Some model

types do allow confidence measures to be calculated, but these are generally specific

to the model type. The method described in Chapter 5 presents a much more general

approach to this problem, applicable to any type of quantitative model.

The next four chapters focus on the topic of interpretability. Chapters 6 and 7

describe the development and interpretation of linear regression QSAR models. Chapter

6 presents a study of a set of artemisinin analogs that were designed for their anti-

malarial activity. Both linear and nonlinear models are developed and the former is

subsequently interpreted using the PLS technique. Chapter 7 describes a study of a set

of PDGFR inhibitors, which are of interest owing to their ability to interfere with cell

signal transduction mechanisms and are therefore of interest as anti-cancer drugs. As

before, the study develops linear and nonlinear models and presents an interpretation

of the linear model. In addition,a random forest model is developed to investigate the

importance of the descriptors used in the study and in specific models.
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The focus of interpretation techniques in the field of 2-D QSAR modeling has

generally been restricted to the interpretation of linear regression models. In some cases,

neural network models have been interpreted in a broad manner. Chapters 8 and 9

describe methods that were developed to interpret neural network models. Chapter 8

describes a simple method to provide a quantitative measure of descriptor importance in a

neural network. The method is based on a sensitivity analysis of the model and is similar

in nature to the descriptor importance measure that is available for random forest models.

However, this method is similar to other approaches to the interpretation of neural

networks since it only provides information about which descriptor is the most important

for the model’s predictive ability. It does not provide any insight into the nature of the

correlation between the input to the network and the output from the network. A method

to extract detailed information regarding the structure-property relationships encoded

in the weights and biases of a trained neural network models is described in Chapter

9. This method is inspired by the PLS interpretation technique for linear models. The

method simplifies the neural network and considers the hidden neurons of the network

in a manner analogous to the latent variables of the PLS interpretation. In addition,

plots analogous to the score plots of the PLS technique are presented. Combining the

visual information provided by the score plots together with the analysis of the weights

and biases, the method presented is able to provide a detailed view of the correlations

between the input descriptors and the predicted property. The method thus provides for

neural network models, what the PLS method has provided for linear regression models.

Namely, an in-depth, compound-wise dissection of the structure-property trends encoded

in the respective models

Finally, Chapter 10 summarizes the results of the studies presented in this work

and concludes by highlighting the contributions of this thesis to the field of QSAR

modeling.
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Fig. 1.1. A flowchart showing the steps involved in predicting molecular properties or
activities from molecular structure
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