
Parallel Computing in Chemistry

Rajarshi Guha
IIT Kharagpur

March, 2001

1 Introduction

This paper intends to discuss the role of parallel computing in computational
chemistry. As the terminology implies computational chemistry is heavily
dependent on the computational power available. Much of the field involved
running programs and applications on single processor systems. Even though
processor power has improved steadily (Moores Law [1]) over the years, the
need for more CPU power has driven researchers to take advantage of the
parallel paradigm.

When one thinks of parallel processing images of large, room sized su-
percomputers come to mind. Companies like Cray [2], IBM [3], SGI [4]
provide such machines which are undoubtably hugely powerful. However
these are not the only types of parallel machines available. In later sections
the different types of parallel machine designs will be briefly discussed along
with their advantages and disadvantages. However parallel machines are not
the only component to a successful setup for computational chemistry (and
for that matter, any field). The software techniques also play a vital role in
such applications. In subsequent sections I discuss the available software and
applications.

2 What is Parallel Processing?

Parallel processing refers to the concept of speeding-up the execution of a
program by dividing the program into multiple fragments that can execute
simultaneously, each on its own processor. A program being executed across

1

http://jijo.cjb.net


n processors might execute n times faster than it would using a single proces-
sor. Here I stress on might as there are several factors which can cause a given
application to run more slowly when distributed among several processor s
than when run on a single processor.

The design of a parallel program for a given problem depends on several
factors. These include

• Type of parallel hardware available

• Nature of the problem

• Financial constraints

Coding a problem for a parallel machine is not a trivial task. As such there
are no guides or cookbooks detailing how a problem may be parallelized. In
general each problem must be studied on an individual basis and in some
cases can require extensive recoding from the original serial implementation.

3 Types of Parallel Hardware

Parallel hardware has developed enormously. What started with a few com-
panies developing highly specialized parallel hardware (typically referred to
as supercomputers) costing hundreds of thousands, if not millions, of dollars
has now burgeoned into a scenario whereby individuals can now assemble
supercomputer class machines within a few thousand dollars.

The major difference between normal (serial) computers and parallel com-
puters is that the latter will have more than one processor. The multiple
processors may constitute a single machine or may be in the form of a dis-
tributed network. Parallel machines can be divided into two main types
classified as SIMD and MIMD. These stand for Single Instruction Multiple
Data and Multiple Instruction Multiple Data respectively. In the SIMD case
all processors execute the same operation at the same time, but each proces-
sor is allowed to operate upon its own data. This model easily corresponds to
the concept of performing the same operation on every element of an array,
and is thus often associated with vector or array manipulation.

SIMD machines can again be grouped into two types:

• Processor array architecture

2



• Vector pipelines

Examples of the former machines are the Connection Machine (CM2), Mas-
Par MP-1 (DEC mpp-12000) and the ICL DAP in which there are a very
large array of processing elements usually handling only 1 or 4 bits of data
at a time. These units are coordinated by a central dispatching unit

Vector machines have a fairly small number (usually less than 32) of very
powerful execution units, called vectors because they are specially designed
to be able to handle long strings (”vectors”) of floating point numbers. The
main CPU handles dispatching jobs and associated data to the vector units,
and takes care of coordinating whatever has to be done with the results
from each, while the vectors themselves concentrate on applying the pro-
gram they’ve been loaded with to their own unique slice of the overall data.
Examples of the such machines are the IBM 9000 and Cray YMP.

In the MIMD model on the other hand, each processor is essentially act-
ing independently. This model corresponds to the concept of decomposing
a program for parallel execution on a functional basis; This is a more flexi-
ble model than SIMD execution, but a downside is the presence debugging
nightmares called race conditions, in which a program may intermittently fail
due to timing variations reordering the operations of one processor relative
to those of another. An example of this type of machine is the Beowulf clus-
ters (also termed as Network Of Clusters or NOW ). There is another model
termed as SPMD or Single Program, Multiple Data and is a restricted version
of MIMD in which all processors are running the same program. However un-
like SIMD, each processor executing SPMD code may take a different control
flow path through the program.

An important term that comes up when discussing parallel hardware is
SMP or Symmetric Multi Processing. An SMP system is one that contains 2
or more processors on the motherboard. The main feature of such system is
that it does not involve proprietary hardware CPU’s or specialized network
connections. If the motherboard and OS are SMP aware then the system
can handle parallel applications.

4 Cluster Computing

The major disadvantage of using parallel supercomputers is that one is tied
to a specific vendor. Any refinements or improvements to the hardware
or the controlling software must be carried out with the vendors help. In

3



many cases only some specific applications are ported to the platform in
question. A major point against such machines is the extremely high cost of
the machine. This is not to say that such machine are unpopular. For certain
problem areas and with the proper funding use of such machines can greatly
speed up work. However for more modest applications and where funds are
limited cluster computing is a very economical and efficient alternative.

Compute clusters basically consist of off the shelf PC’s interconnected
via a high speed network. There is usually a single node which acts as the
controller, the remaining nodes acting as slaves. One of the most popular
setups are Beowulf [5] clusters in which the nodes run a patched version of
the Linux kernel. Some of the advantages in using clusters are noted below.

• Each of the machines in a cluster can be a complete system, usable for
a wide range of other computing applications.

• Most of the hardware for building a cluster is being sold in high volume,
with correspond dingly low commodity prices as the result.

• Cluster computing can scale to very large systems.With a little work,
hundreds or even thousands of machines can be networked to form a
cluster whose performance approaches that of conventional supercom-
puters.

• The fact that replacing a bad (faulty) machine within a cluster is trivial
compared to fixing a partly faulty SMP yields much higher availability.

• There is quite a lot of software support that will help achieve good
performance for programs that are well suited to this environment.
Furthermore much of this software can be obtained freely and is open
source in nature.

5 Programming in Parallel

Up to this point I’ve described the hardware that is involved in parallel ap-
plications. But hardware alone doesn’t get you results. Software for parallel
applications can make or break a parallel project. In this section I’ll be re-
stricting the discussion to cluster computing on Linux - other platforms are
quite proprietary and can more information can be obtained from their web
sites.

4



When designing parallel algorithms the implementation usually involves
the use of libraries which provide parallel constructs. Parallel programs are
different from serial programs in that the code must be parallelized. Essen-
tially, this means that various parts of the problem which may be computed
independently should be split up into independent sections. These sections
can then be distributed to the compute nodes. There should be a controlling
code which coordinates the activities of the individual nodes and synchro-
nizes communications between them. In addition there should be code which
will collect the data from the individual nodes and combine them to give the
final result. In the Linux world there are two main libraries which allow the
programmer to implement parallel algorithms: PVM (Parallel Virtual Ma-
chine) [6] and MPI (Message Passing Interface) [7] [8]. Both these libraries
provide fundamental operations for parallel programming. The major differ-
ence between the two libraries is that the latter is based on the concept of
virtual machines while the latter is based on a message passing mechanism
between cooperating processes.

However even with underlying libraries, the program must be parallelized.
This job should be done by the compiler; however compiler technology has
not yet reached the stage where a compiler can generate truly efficient parallel
code. In general explicitly implementing parallel constructs by hand (using
the various constructs provided by the libraries) is still the best way to go.
However there several efforts to produce good quality parallelizing compilers.
A few are given below:

• HPF (High-Performance Fortran) [9], is essentially the enhanced, stan-
dardized, version of what many of us used to know as CM Fortran or
Fortran D; it extends Fortran 90 with a variety of parallel processing
enhancements, largely focussed on specifying data layouts.

• GLU (Granular Lucid) [10] is a very high-level programming system
based on a hybrid programming model that combines intensional (Lu-
cid) and imperative models. It supports both PVM and TCP sockets.

• Jade [11] is a parallel programming language that extends C to ex-
ploit coarse-grain concurrency in sequential, imperative programs. It
assumes a distributed shared memory model.

• pC++/Sage++ [12] is a language extension to C++ that permits data-
parallel style operations using ”collections of objects” from some base

5



”element” class. It is a preprocessor generating C++ code that can
run under PVM

Of course these are not the only compilers available. A number of commercial
compilers especially for HPF and C based languages are available (notably
the Portland Group [13] compilers).

6 Parallel Performance

One of the major questions that arise is whether a problem is parallelizable
or not. The answer to this question is heavily dependent on the nature of
the problem and also the efficiency to be gained from such parallelization.
Below I look at some of the factors that can affect the expected speedup of
parallelized programs.

Software Overhead

Even with a completely equivalent algorithm, software overhead arises in the
concurrent (parallel) implementation. (e.g. there may be additional index
calculations necessitated by the manner in which data are ”split up” among
processors) i.e. there is generally more lines of code to be executed in the
parallel program than the sequential program.

Load Balancing

Speedup is generally limited by the speed of the slowest node. So an impor-
tant consideration is to ensure that each node performs the same amount of
work. i.e. the system is load balanced.

Communication Overhead

Assuming that communication and calculation cannot be overlapped, then
any time spent communicating the data between processors directly degrades
the speedup. (because the processors are not calculating ).

6



Nature of the Interconnect

When the code may be parallelized there may be large amounts of commu-
nication (data transfer, control messages etc) between individual units. In
such cases the speedup to be obtained from parallelization becomes limited
by the nature of the network connecting the individual processing units. Such
problems can be alleviated to some extent by using high speed interconnects
(such as Myrinet for Beowulf clusters).

An important law of parallel programming known as Amdahl’s Law [14]
states that

the speedup of a parallel algorithm is effectively limited by the
number of operations which must be performed sequentially, i.e
its Serial Fraction

As a result of this Law even problems which have apparently been parallelized
may not exhibit the expected speedups due to the presence of serial code. In
many cases this severely limits the speedup obtainable from parallelization.

7 Applications to Chemistry

There are a large number of centers around the world using parallel tech-
niques for computational chemistry applications. Both university and com-
mercial concerns have projects and applications that are designed for parallel
processing. Among the commercial companies a notable example is SGI [4]
which produces parallel processing hardware as well as applications for their
hardware. These applications cover quantum chemistry, drug design and
computational biology [15].

There are quite a few examples of computational chemistry software that
is designed for parallel processing. Notable examples include Gaussian [16],
GamessUS [17], MOPAC [18]. An example of the speed ups obtained from
an increase in processor for a Gaussian calculation can be seen in the adjoin-
ing graphic taken from a SGI report [22]

7



SGI Computational Chemistry Applications ReportFall 2000 10 of 45

Gaussian 98 Parallel Performance (1)

α-pinene C10H16

B3-LYP Frequency Calculation
basis: 6-31G(d)
182 basis functions

On an SGI
 
3000 series using 12 MIPS R12000

 
400 MHz processors, the execution runs close to 10 times

faster than on one processor, resulting in a significant reduction of execution time, from close to four hours
to just over 23 minutes. The case followed the 98.4% Amdahl’s Law curve.

13,830 7,045 3,564 1,930 1,394
0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 4 8 12

Number of Processors

Pa
ra

lle
l S

pe
ed

up

SGI Origin 3000 series 400 MHz 8MB
Labels: Time in sec
98.4%

8



MPQC (Massively Parallel Quantum Chemistry) [21] is a quantum chemical
application designed from the ground up to be highly parallelized. It is based
on MPI and is highly configurable and extendable.

The parallel version of Gaussian uses the Linda batch distribution soft-
ware. Most universities use Beowulf clusters as their underlying hardware
(due to cheapness, low maintainence hassles and availability). MPI or PVM
is used as the underlying communication protocol. Apart from quantum
chemistry applications molecular dynamics simulations is an area which is
usually highly amenable to parallel encoding. Examples of parallelized MD
codes include NAMD [19] and Moldy [20]

An example of the of the speed up obtained on a Beowulf cluster can be
seen from the table below which compares times for a 0.2 ps MD simulation
of dppc (a phospholipid membrane system) in water solution (7616 atoms,
Rcut=14.5A, Ewald summation, double time-step algorithm 2/0.2 fs) carried
out at the Arrhenius Laboratory, University of Stockholm. (All times are in
seconds)

Number of Processors IBM SP2 Cray TE3 Beowulf
1 1807 3630 1488
2 931 1676 775
4 492 863 437
8 269 476 273
10 190 337 196

8 Conclusion

The field of parallel programming is not a standardized one. Many factors
affect whether and how a particular application can be parallelized. Both
hardware and software aspects of the problem must be considered and for
both there are a large number of options available. As of now there is no
cookbook or ’Parallel Programming for Dummies’ available. A lot of the
work is thus based on rules of thumb and experience. As a result one must
carefully weigh the pros and cons of going on for a parallel solution for a given
problem. However, with the advent of Beowulf clusters, using off the shelf
hardware and freely available software libraries, languages and applications
the barrier to investment has been considerably lowered. In the field of chem-
istry the extreme computational requirements will always lead researchers to
explore the possibilities provided by parallel techniques for improved speed

9



up and efficiency. The presence of both freely available software as well
as commercial software for nearly every aspect of computational chemistry
and biology allows one to experiment and explore the avenues opened up by
parallel techniques.

Internet Resources

[1] tp://www.intel.com/intel/museum/25anniv/hof/moore.htm
[2] http://www.cray.com/
[3] http://www.ibm.com/
[4] http://www.sgi.com/
[5] http://www.beowulf.org/
[6] http://www.epm.ornl.gov/pvm/pvm home.html
[7] http://www.mcs.anl.gov/mpi/
[8] http://www.mpi-forum.org/
[9] http://www.crpc.rice.edu/HPFF/home.html
[10] http://www.csl.sri.com/GLU.html
[11] http://suif.stanford.edu/ scales/sam.html
[12] http://www.extreme.indiana.edu/sage/
[13] http://www.pgroup.com/
[14] www-jics.cs.utk.edu/I2PP/I2PP-0698/sld065.htm
[15] http://www.sgi.com/solutions/sciences/chembio/comp chem.html
[16] http://www.gaussian.com
[17] http://www.msg.ameslab.gov/GAMESS/ or http://lacebark.ntu.edu.au/gamess/
[18] http://sal.kachinatech.com/Z/2/MOPAC.html
[19] http://www.ks.uiuc.edu/Research/namd/
[20] http://www.earth.ox.ac.uk/keith/moldy.html
[21] http://aros.ca.sandia.gov/cljanss/mpqc/
[22] http://www.sgi.com/solutions/sciences/chembio/pdf/comp chem 00.pdf

10

http://www.intel.com/intel/museum/25anniv/hof/moore.htm
http://www.cray.com/
http://www.ibm.com/
http://www.sgi.com/
http://www.beowulf.org/
http://www.epm.ornl.gov/pvm/pvm_home.html
http://www.mcs.anl.gov/mpi/
http://www.mpi-forum.org/
http://www.crpc.rice.edu/HPFF/home.html
http://www.csl.sri.com/GLU.html
http://suif.stanford.edu/~scales/sam.html
http://www.extreme.indiana.edu/sage/
http://www.pgroup.com/
file:www-jics.cs.utk.edu/I2PP/I2PP-0698/sld065.htm
http://www.sgi.com/solutions/sciences/chembio/comp_chem.html
http://www.gaussian.com
http://www.msg.ameslab.gov/GAMESS/
http://lacebark.ntu.edu.au/gamess/
http://sal.kachinatech.com/Z/2/MOPAC.html
http://www.ks.uiuc.edu/Research/namd/
http://www.earth.ox.ac.uk/keith/moldy.html
http://aros.ca.sandia.gov/cljanss/mpqc/
http://www.sgi.com/solutions/sciences/chembio/pdf/comp_chem_00.pdf

	Introduction
	What is Parallel Processing?
	Types of Parallel Hardware
	Cluster Computing
	Programming in Parallel
	Parallel Performance
	Applications to Chemistry
	Conclusion

