

Writing and Using Web Services
or

I don't care where my programs are

Rajarshi Guha
Indiana University

rguha@indiana.edu

mailto:rguha@indiana.edu?subject=Web%20Service%20Tutorial

Overview

● Two 45 minute sessions, with 15 minute break
● Some theory, but mainly focus on 'How do I do

...?' type problems
● At the end you should be able to set up, write

and provide your own web services
● I'll try to be (somewhat) language agnostic

– I'll focus on Java but also talk about Python
● I'll focus on freely available software

Overview

● Some of the topics I'll be covering
– Software requirements
– Protocols – SOAP & WSDL
– Hosting web services
– Writing a service
– Writing clients

● Examples will be from cheminformatics – I'll be
using the CDK to provide the functionality

Why Use Web Services?

What is a Web Service (WS) ?

● Code running on an arbitrary machine that can
be accessed in a platform- and language-
independent fashion

● More generally, a WS framework is an XML-
based distributed services system.
– Suitable for machine-to-machine interaction
– Platform & language agnostic
– Follows standards

Basic Architectures:
CGI and Web Services

DB or
 application

Browser

Web
Server

HTTP GET/POST

JDBC

Web
Server

DB or
 application

JDBC

Browser

Web
Server

SOAP

SOAP
WSDL

GUI or CLI
Client

WSDL

W
S
D

LW
S
D

L

SOAP
SOAP

When is a WS Called For?

● Want to make algorithms available
– avoid downloads
– avoid support requests
– if your algorithm takes milliseconds (or longer), it

can be used in a WS
● Avoid direct database access

Why Not CGI?

● CGI has been around for a long time
● Returns HTML

– nice if your interface is a browser
– if not, parse the HTML – not fun!

● Can be a security issue
● But, it is possible to use CGI & web services

What Can They Do For Us?

● Generally we have to get software (programs,
data)
– Might involve compiling, debugging
– Usually involves administration
– Hassles!

● It would be nice to simply make calls to a
library, that we don't have to manage

● A WS is essentially a set of function calls that a
remote user can send input to and get a return
value – this is the RPC view

Famous Web Services

● Google
– Access their search engine
– Access Google Maps

● Amazon
– Access their search engine
– Access historical data

Chemistry & Biology Web Services

● Indiana University, USA
● Cambridge University, UK
● NCBI, USA
● PathPort, Virginia Tech, USA
● EBI, UK
● KEGG Services, Kyoto University, Japan
● The Taverna project has a registry scientific

web services

http://taverna.sourceforge.net/
http://taverna.sourceforge.net/index.php?doc=services.html

IU Web Services

● Variety of public cheminformatics services
– Molecular descriptors
– 2D structure diagrams
– TPSA
– Fingerprints
– Similarity calculations
– Toxicity class predictions

Caveats

● Web services are not a panacea
● Some issues may arise

– Security
– Provenance – what is the service really doing?
– Needs a Net connection
– Reliability

Software Requirements

Some Terminology

● SOAP – Simple Object Access Protocol.
Describes how data will be encoded when it's
sent to a service and decoded when received
from a service

● WSDL – Web Service Description Language
Describes how a client should interact with a
web service

● Application Container – software that hosts
services

The Components of a WS

● Server side
– Web server
– Application container
– Service code

● Web server can be
optional

● Container can be
optional

● Client side
– Some libraries
– Client code

● Client code might be
– Stand alone program
– Web browser

Programming Languages

● Your favorite language!
● Support exists for

– C/C++
– Java
– Perl
– Python
– PHP
– Ruby
– .Net (so you can access WS's from Excel)

Server Side Components (Java)

● Apache web server
– Before v2.2 you will need to get mod_jk
– From v2.2 onwards use mod_proxy_ajp – comes

bundled
– Latter is easier, but can involve security risks

● Application Container
– Tomcat
– JBoss

● SOAP libraries and any other dependencies

Server Side Components

● You don't have to have an explicit web server
● But makes management of your setup easier

– Load balancing
– URL rewriting
– Efficient

● If you only have a single service you can even
drop the container and run your service code
directly - depends on what type of set up you
have

Client Side

● Some SOAP libraries or packages, depending
on your language

● Your client code
– This can be standalone code
– This could a web page (using PHP)

Personal Experience

● I tried using other peoples setups – failed
● Decided to see how long it takes to get my own

– Less than one day – with no experience of
application containers, SOAP etc

● The time consuming step is setting up your web
server and application container

● Service and client code is easy!
● Caveat: This got me up and running, but not

necessarily securely or optimally

Setting Up The Service
Environment

What Environment Do We Use?

● For now we're going to consider Java services
and clients

● So we'll be working with
– Apache web server
– Tomcat
– AXIS libraries

● We'll look at other possibilities later on

Setting Up Apache (2.2)
● I'll assume that you will be using

mod_proxy_ajp and running Linux
● We'll run the whole setup on the local machine
● In your httpd.conf file you need

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
...
ProxyRequests Off
ProxyPass /axis http://localhost:8080/axis
ProxyPassreverse /axis http://localhost:8080/

http://localhost:8080/axis
http://localhost:8080/

Setting Up Apache
● To restrict access to the proxied resource, add

to httpd.conf

<Proxy http://your.domain.name/axis/*>
 Order deny,allow
 Allow from all
 AuthType Basic
 AuthName "Tomcat Axis Webservices"
 AuthUserFile /path/to/apachepasswords
 Require user user1 user2
</Proxy>

● Restart the web server

http://your.domain.name/axis/

Setting Up Tomcat

● We'll be using Tomcat 5.5 & JDK 1.5
● Need to define environment variables

– CATALINA_HOME – points to the Tomcat installation

– JAVA_HOME – points to the JDK

● Add a user and group, say, tomcat

groupadd tomcat
useradd -g tomcat -c "Tomcat User" \
 -d $CATALINE_HOME tomcat
passwd tomcat

Setting Up Tomcat

● We'll have to edit the config file – server.xml
● Make sure it contains:

<Connector

 port="8009"
 enableLookups="false"
 redirectPort="8443"
 protocol="AJP/1.3"
 />

 <Connector
 port="8080"
 enableLookups="false"
 redirectPort="8443"
 />

Setting Up Tomcat

● If some of your web services are going to
depend on some common jar files, place them
in $CATALINA_HOME/shared/lib

● This keeps individual web services simple to
manage

Setting Up AXIS

● AXIS is a set of libraries that allow the service
code and the client code to understand SOAP

● Usually, all your WS's will need AXIS
● So we can place all the AXIS jars in
$CATALINA_HOME/shared/lib

● For now we'll be a little crude:
– From the AXIS tarball copy webapps/axis to
$CATALINA_HOME/webapps

And it All Comes Together

● Start up Tomcat:
– sudo – tomcat -c $CATALINA_HOME/bin/startup.sh

● Restart Apache
– /etc/init.d/httpd restart

● Browse to http://localhost/axis/
– If you choose not to run Apache then browse

to http://localhost:8080/axis/
● All of this is described in

– Setting up Apache2, Axis & Tomcat 5 on my
website

http://localhost/axis/
http://localhost:8080/axis/
http://cheminfo.informatics.indiana.edu/~rguha/misc/apachetomcat.html

.... to Give

Writing a Web Service

Uptil Now
● We've installed a web server, app environment,

 some libraries
● We're ready to write and provide a web service

Individual applications under here

Application specific jars

Our actual web service functionality

Log files – very useful!

A single application

Getting Ready to Develop

● We're going to use the CDK to make some web
services

● The CDK has methods for
– fingerprints, 2D structure diagrams
– descriptors, molecular weights & formulae

● Get the CDK jar and place it in your CLASSPATH
● Also, copy the jar to the proper Tomcat directory

http://almost.cubic.uni-koeln.de/cdk/cdk_top

Getting Ready to Develop

● We don't need to bother with SOAP libraries
and Tomcat and so on, at this point

Writing a service is the same as writing
an ordinary Java program

● It's not always as simple as this

Getting Fingerprints

● The CDK fingerprinter needs 3 things
– An IAtomContainer object
– how many bits
– search depth

● And returns a BitSet object
● Problems

– SOAP doesn't know about these objects
– We are going to have a SMILES as input
– We want bit positions as output

Getting Fingerprints
● Solutions

– The service will take a String object and output a
String (for now)

public class CDKws {
 public String getFingerprintString(String s, int length, int depth) throws CDKException {
 String print = "";
 IMolecule mol = null;
 SmilesParser sp = new SmilesParser();
 mol = sp.parseSmiles(s);
 if (mol == null) {
 throw new CDKException("SmilesParser exception");
 }
 Fingerprinter fprinter = new Fingerprinter(length, depth);
 try {
 print = fprinter.getFingerprint(mol).toString();
 } catch (Exception e) {
 throw new CDKException("Fingerprinter error");
 }
 return(print);
 }
}

Getting Fingerprints

● If we called this web service with CC=CCOC,
1024, 6 and processed the SOAP payload,
we'd get
– “{75, 284, 323, 476, 500, 540, 544, 588, 633, 637, 741, 742, 831, 846}”

● So our client would have to parse the String
object to get the actual bit positions
– Not elegant!

● But, AXIS SOAP allows us to return Vector
objects (as well as plain arrays)

● Let's add another method to the CDKws class

Getting Fingerprints
 public Vector getFingerprintVector(String s, int length, int depth) throws CDKException {
 IMolecule mol = null;
 SmilesParser sp = new SmilesParser();
 mol = sp.parseSmiles(s);
 if (mol == null) {
 throw new CDKException("SmilesParser exception");
 }
 Fingerprinter fprinter = new Fingerprinter(length, depth);
 String fp = null;
 try {
 fp = fprinter.getFingerprint(mol).toString();
 } catch (Exception e) {
 throw new CDKException("Fingerprinter error");
 }
 String[] st = fp.substring(1,fp.length()-1).split("[\\s,]"); // I got lazy
 Vector v = new Vector();
 for (int i = 0; i < st.length; i++) {
 if (st[i].equals("")) continue;
 v.add(new Integer(st[i]));
 }
 return(v);
 }

● Now we get a Vector of the bit positions that are on

Some Things to Note

● The code does not consider the fact that it will
be a web service

● This means you can do testing on the
command line (or via your IDE)

● A single web service (e.g., fingerprints) can
really be multiple web services via
polymorphism
– smiles
– smiles, no. bits
– smiles, no. bits, depth

Installing the Service

● Compile the service code
● Copy the class file to the web app classes

directory
● Create a web service deployment descriptor

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="CDKws" provider="java:RPC">
 <parameter name="className" value="CDKws"/>
 <parameter name="allowedMethods" value="getFingerprintString getFingerprintVector />
 </service>
 <service name="CDKdesc" provider="java:RPC">
 <parameter name="className" value="CDKdesc"/>
 <parameter name="allowedMethods" value="getDescriptors"/>
 </service>
</deployment>

Installing the Service
● AXIS uses the WSDD to direct SOAP calls
● The part of interest is the <service> entry

 <service name="CDKws" provider="java:RPC">
 <parameter name="className" value="CDKws"/>
 <parameter name="allowedMethods" value="getFingerprintString
 getFingerprintVector />
 </service>

What the service will be
known as to the client

The Java class that
will provide the service

Which methods of the class
can be called by the client

Installing the Service

● Save the WSDD to a file (mydeploy.wsdd)
● Make sure the AXIS jars are in the

CLASSPATH
● Install the WSDD using AdminClient

– java -cp $CLASSPATH org.apache.axis.client.AdminClient \
 -lhttp://localhost:8080/axis/services/AdminService \
 mydeploy.wsdd

● All this can be automated if you're using an IDE
(Eclipse, IDEA etc.)

Checking to See if it Worked

● Go to the AXIS page we saw before and click
on View

● Each bullet is a service

● Individual services provide one
 or more methods

● Note that there are multiple
 methods with the same name

● These are polymorphic versions
 of the same method

Writing a WS Client

Requirements

● If all we are going to do is call the service, we
only need the AXIS libraries in the CLASSPATH

● So no need to fiddle with the CDK CLASSPATH
● However,

– the client needs to know where the service is
– what methods can be called
– what is the input to and output from the methods

● It's nice if the author of the service lets us know
● Otherwise we can use WSDL

Web Service Description Language

● WSDL is an XML-based description of a web
service

● It describes
– what type of objects it accepts and returns and what

type of exceptions can occur amongst other things
● This is what makes a WS independent of

language
● What do we do with WSDL?

– Look at it and write a client
– Generate a proxy and use that in the client

Where Does the WSDL Come From?

● We don't have to generate WSDL
● The server will generate it for us
● But we still need to

know where to find it
● Service discovery is

not fully solved
● One approach is

UDDI
● The other is to ask

around

What Does WSDL Look Like?
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://office:8080/axis/services/CDKstruct3D" xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://office:8080/axis/services/CDKstruct3D" xmlns:intf="http://office:8080/axis/services/CDKstruct3D"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:tns1="http://exception.cdk.openscience.org"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.2RC2
Built on Nov 16, 2004 (12:19:44 EST)-->
 <wsdl:types>
 <schema targetNamespace="http://exception.cdk.openscience.org" xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="CDKException">
 <sequence/>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="CDKException">
 <wsdl:part name="fault" type="tns1:CDKException"/>
 </wsdl:message>
 <wsdl:message name="get3DCoordinatesResponse">
 <wsdl:part name="get3DCoordinatesReturn" type="soapenc:string"/>
 </wsdl:message>
 <wsdl:message name="get3DCoordinatesRequest">
 <wsdl:part name="in0" type="soapenc:string"/>
 <wsdl:part name="in1" type="soapenc:string"/>
 </wsdl:message>
 <wsdl:portType name="CDKstruct3D">
 <wsdl:operation name="get3DCoordinates" parameterOrder="in0 in1">
 <wsdl:input message="impl:get3DCoordinatesRequest" name="get3DCoordinatesRequest"/>
 <wsdl:output message="impl:get3DCoordinatesResponse" name="get3DCoordinatesResponse"/>
 <wsdl:fault message="impl:CDKException" name="CDKException"/>
 </wsdl:operation>
 </wsdl:portType>

My eyes hurt!

The Components of WSDL
● Types

– Used to define custom message types
● Messages

– Abstraction of request and response messages that my client and
service need to communicate.

● PortTypes
– Contains a set of operations.
– Operations organize WSDL messages.
– Operation->method name, PortType->Java interface

● Bindings
– Binds the PortType to a specific protocol (typically SOAP over

http).
● Services

– Gives you one or more URLs for the service.
– Let's us know where to go to execute 'CDKstruct3D'

The Components of WSDL

Getting Something Out of WSDL
 <wsdl:service name="CDKstruct3DService">
 <wsdl:port binding="impl:CDKstruct3DSoapBinding" name="CDKstruct3D">
 <wsdlsoap:address location="http://office:8080/axis/services/CDKstruct3D"/>
 </wsdl:port>
 </wsdl:service

Service
Indicates what protocol
we'll use

The location of
the service

<wsdl:binding name="CDKstruct3DSoapBinding" type="impl:CDKstruct3D">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="get3DCoordinates">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="get3DCoordinatesRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://DefaultNamespace" use="encoded"/>
 </wsdl:input>
 <wsdl:output name="get3DCoordinatesResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://office:8080/axis/services/CDKstruct3D" use="encoded"/>
 </wsdl:output>
 <wsdl:fault name="CDKException">
 <wsdlsoap:fault encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
name="CDKException"
 namespace="http://office:8080/axis/services/CDKstruct3D"
use="encoded"/>
 </wsdl:fault>
 </wsdl:operation>

Binding The protocol is
 SOAP over HTTP

Description of
the input

Description of
the output

<wsdl:message name="CDKException">
 <wsdl:part name="fault" type="tns1:CDKException"/>
</wsdl:message>
<wsdl:message name="get3DCoordinatesResponse">
 <wsdl:part name="get3DCoordinatesReturn" type="soapenc:string"/>
</wsdl:message>
<wsdl:message name="get3DCoordinatesRequest">
 <wsdl:part name="in0" type="soapenc:string"/>
 <wsdl:part name="in1" type="soapenc:string"/>
</wsdl:message>

Getting Something Out of WSDL

<wsdl:portType name="CDKstruct3D">
 <wsdl:operation name="get3DCoordinates" parameterOrder="in0 in1">
 <wsdl:input message="impl:get3DCoordinatesRequest" name="get3DCoordinatesRequest"/>
 <wsdl:output message="impl:get3DCoordinatesResponse"
 name="get3DCoordinatesResponse"/>
 <wsdl:fault message="impl:CDKException" name="CDKException"/>
</wsdl:operation>

PortType
Two parameters
in specified order

A message which describes
how a client will communicate

Messages

A description of the
exception that can
be thrown

The type of the
input and their
order

What is the Result of This?

● Examining the WSDL gives us the following
information about the CDKstruct3D service
– Location of the service
– It takes 2 inputs, which will be SOAP encoded

strings
– It returns a SOAP encoded string
– It may return a fault of type CDKException

● But we need to know what the arguments mean
– Got to ask the author!

Simple Object Access Protocol

● SOAP is an XML message format (encoding)
– Describes how an object is represented when sent

to or received from a service
● SOAP messages have to be sent to the service

– Usually over HTTP
● SOAP is usually linked to WSDL
● What does a SOAP message contain?

– Headers
– Payload – arbitrary XML

A SOAP Message

● SOAP structure is very
simple.
– 0 or 1 header elements
– 1 body element
– Envelop that wraps it all.

● Body contains XML payload.
● Headers are structured the

same way.
– Can contain additional

payloads of meta-data
– Security information, quality of

service, etc.

Envelope

Body

Message
Payload

Header

What Does SOAP Look Like?

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
>
<SOAP-ENV:Body>
 <ns1:getFingerprintString
 xmlns:ns1="http://localhost:8080/axis/services/CDKws"
 SOAP-ENC:root="1">
 <v1 xsi:type="xsd:string">CC=COC</v1>
 <v2 xsi:type="xsd:int">1024</v2>
 <v3 xsi:type="xsd:int">6</v3>
 </ns1:getFingerprintString>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Payload

What Types Does SOAP Allow?

● SOAP specifies a number of primitive built in types
– int, double, float, boolean, String, Date, arrays etc.

● Some compound types also allowed
– arrays, hashes etc

● So when making a request using SOAP we need to
convert objects to a proper SOAP type
– The required type is described in the WSDL

● Luckily we don't need to deal with raw SOAP
messages
– The SOAP toolkit (AXIS for us) will handle it

The Client Code

 public CDKwsClient(String host) {
 String endpoint = "http://localhost:8080/axis/services/CDKws";
 try {
 Service service = new Service();
 call = (Call) service.createCall();
 call.setTargetEndpointAddress(new java.net.URL(endpoint));
 } catch (Throwable t) {
 // handle the exception
 }
 }

● Initialization Set up the service location

Initialize the service

 public String getFPString(String[] args) {
 try {
 call.removeAllParameters();
 call.setOperationName("getFingerprintString");
 call.addParameter("s", XMLType.XSD_STRING, ParameterMode.IN);
 call.setReturnType(XMLType.XSD_STRING);
 String ret = (String)call.invoke(new Object[] { args[0] });
 System.out.println(ret);
 return ret;
 } catch (Throwable t) {
 // handle the error
 }
 }

The Client Code

● Getting a fingerprint as a String object

The method we will call

Setup the input parameter, a
single SMILES string

Setup the
return type

Perform the
call

Print out
what we got

 public Vector getFPVector(String[] args) {
 try {
 call.removeAllParameters();
 call.setOperationName("getFingerprintVector");
 call.addParameter("s", XMLType.XSD_STRING, ParameterMode.IN);
 call.setReturnType(new QName("Vector"), Vector.class);
 Vector ret = (Vector)call.invoke(new Object[] { args[0] });
 Iterator it = ret.iterator();
 while (it.hasNext()) {
 System.out.println(it.next());
 }
 return ret;
 } catch (Throwable t) {
 // handle the error
 }
 }

The Client Code

● Getting a fingerprint as a Vector object

The method we will call

We setup
the return
type as a
Vector

Print the
elements
of the Vector

Isn't This Too Much Work?

● Yes!
● Let AXIS generate Java classes from the

WSDL

● This will create a set of classes that correspond
 to the WSDL components

● So now the client code will be ...

java -cp $CLASSPATH org.apache.axis.wsdl.WSDL2Java \
 -p javaworld.axis.proxy \

 http://localhost:8080/axis/services/CDKws?wsdl

Using the Proxy Class

● The AXIS generated code creates a proxy
● Rather than dealing with SOAP we now deal

with the WS in terms of WSDL
● Essentially we treat the service as if it were a

local object

 public Vector getFPVector(String[] args) throws Exception {
 CDKwsServiceLocator service = new CDKwsServiceLocator();
 CDKws port = service.getPort();
 Vector ret = port.getFingerprintVector(args[0]);
 return ret
 }

Other Clients – The Browser

● You can directly access a service using your
browser

● And you get
● Which is

useful for
checking but
not much else

● Can't pass anything but strings

 http://localhost:8080/axis/services/CDKws?method=getFingerprintString&s=CC=CCOC

file:///home/rajarshi/docs/papers/pres/wstut/tut.odp/%20%20%20%20http://localhost:8080/axis/services/CDKws%3Fmethod=getFingerprintString&s=CC=CCOC

Other Clients – The Web Page

● It's handy to have a web page that provides a
form interface

● Depends on
whether the WS is
useful as a web
page

● Very easy with the
PHP

Other Clients – The Web Page

 <?php
 require_once('SOAP/WSDL.php');
 require_once('SOAP/Client.php');
 function CallTPSAService($t) {
 $client = new
 SOAP_Client('http://localhost:8080/axis/services/CDKws');
 $params = array('smiles'=>trim($t));
 $soapoptions = array('timeout' => 360);
 $tpsa = $client->call('getTPSA',$params,$soapoptions);

 if (PEAR::isError($ret)) {
 // handle error
 } else {
 // make a nice web page
 }
 }
 $smiles = $_POST['smiles']
 CallTPSAService($smiles)
?>

<form action="phptpsa.php" method="post" enctype=
 "multipart/form-data">
<table><tr>
 <td>SMILES</td>
 <td><input name="smiles" type="text" /></td>
 <td>
 <input type="submit" value="Get TPSA" />
 </td>
</tr></table>
</form>

The PHP code
called by the
form

The HTML
form

Python Web Services

● Python has a number of ways to deal with WS's
– SOAPpy – simple to use
– ZSI – more comprehensive, learning curve

● Python handling of SOAP is not as well
developed as for Java

● But much easier to write and maintain

A Python Client

● Client code to use the fingerprint service

● One would expect that calling the Vector
version of the web service would return a list

● SOAPpy 0.12.0 & ZSI 1.7.0 throw an exception

import SOAPpy

if __name__ == '__main__':

 service = SOAPpy.WSDL.Proxy(\
 'http://localhost:8080/axis/services/CDKws?wsdl')
 ret = service.getFingerprintString('CC=COC')
 print ret

More Python Client Fun

● Very easy to get available methods and their
parameter names and datatypes

>>> from SOAPpy import WSDL
>>> service = WSDL.Proxy('http://localhost:8080/axis/services/CDKws?wsdl')
>>> service.methods.keys()
[u'getMolecularWeight', u'getMolecularFormula', u'getFingerprintVector', u'getFingerprintString',
u'getHTMLMolecularFormula', u'getTPSA']
>>> fpMethod = service.methods['getFingerprintVector']
>>> fpMethod.inparams[0].name
u'in0'
>>> fpMethod.inparams[0].type
(u'http://schemas.xmlsoap.org/soap/encoding/', u'string')
>>>
>>> fpMethod.outparams[0].name
u'getFingerprintVectorReturn'
>>> fpMethod.outparams[0].type
(u'http://xml.apache.org/xml-soap', u'Vector')

A Python Server

● A simple fingerprint service in Python takes 7
lines

● We use the Frowns toolkit to provide fingerprint
functionality

● Start this in a
terminal

import frowns.Fingerprint
from frowns import Smiles

import SOAPpy

def getFP(smiles):
 mol = Smiles.smilin(smiles)
 fp = frowns.Fingerprint.generateFingerprint(mol)
 return fp

if __name__ == '__main__':
 server = SOAPpy.SOAPServer(('localhost', 8888))
 server.registerFunction(getFP)
 server.serve_forever()

http://frowns.sourceforge.net/

A Client for the Server

● As before the client is pretty trivial
● Run this in

another
terminal

● Python analogs to Tomcat include Plone &
Zope

import SOAPpy

if __name__ == '__main__':
 remote = SOAPpy.SOAPProxy("http://localhost:8888")
 fp = remote.getFP('CC(CCOCC)C=C(CC)OC')
 print fp

Advanced Issues

Can We Use Complex Types?

● Just passing String, int, float objects to WS's
can be limiting

● SOAP allows us to pass some complex objects
such as arrays & structs

● We can pass more complex objects if we
specify them in a schema
– AXIS provides implementations for some collection

classes specified by the SOAP schema :
 Vector, Enumeration, Hashtable, Map

Can We Use Complex Types?

● The type definition describes how an object will
be serialized and deserialized

● A general Java class does not serialize to XML
● But JavaBeans do serialize.

– A bean is a class with accessor (get/set) methods
associated with each of its data types.

● XML Beans and Castor are two Java-to-XML
converters.

● AXIS supports both

Java Object XML

Complex Types - Serialization
● Java class

● Possible SOAP encoding

● You can also write your own serializer - deserializer

class DescriptorBean {
String name=“TPSA”;

 float value = 51.453;
public String getName() {return name;}
public void setName(String n) {name=n;}
public String getValue() {return value;}
public void setValue(float v) {value=v;}

}

<DescriptorBean>
<name xsi:type=“xsd:string”>TPSA</name>
<value xsi:type=“xsd:float”>51.453</value>

</DescriptorBean>

Asynchronous Services

● What if the service takes a long time to run?
● Ideally, the service will be non-blocking

– Client sends the request and does not wait for an
answer.

● How does it know when the job is done?
● Two ways to achieve this behavior

– Polling – client periodically checks with the service
to see if it's done

– Callbacks – a method provided by the client, called
by the service to let it know that the job is done

Asynchronous Services
● These services lead to an important distinction

– Uptil now we have considered WS's as function
calls. This is the RPC view of web services

– Polling and callbacks represent a Message based
view of web services

● Since requests & responses (i.e., messages) are no
longer in-order we need a way to correlate them
– Include unique ID's in the SOAP header
– Java Messaging Services (JMS) provides a way to

do this via JMS headers

Asynchronous Services

● How does the callback approach work?
● The callback can be a web

service located in
– the server container
– the client container
– within the client

● The service just needs to
know where it is

Tomcat Container

Long Running
Service

Tomcat Container

Client process

Callback
Endpoint

Using Code You Didn't Write?

● So far we have been writing the services
● What if you have pre-existing code?

– Hack it into a service – too much work, might not
have the sources

– Run it directly
● Running external code

– Tomcat security can make running arbitrary
executables, via exec(), tricky

– Ant provides a way around this

Ant Based Services

Client Request

Service

Run() Execute()

Short job
(blocking)

Long job
(non-blocking)

● Ant is a build system for
Java programs

● It can execute arbitrary
programs via the
<execute> task

● We have two versions
– one for short jobs (sec's)
– one for long jobs (hours, days)

● The status of an Execute() can be queried via
callbacks using a Context web service

Ant Based Web Services

● We currently have some services that are
based on Ant
– BCI clustering & fingerprints
– ToxTree toxicity predictions

● BCI is compiled C code, ToxTree is a Java jar
file

● Clearly, any executable can be made into a
web service

● Caveat – make sure the GUI is separate from
the core code

Handling Binary Data

● Sometimes you will return binary data
– The CDKsdg service returns a 2D structure diagram

as a stream of bytes representing the JPEG image
● Can be handled in two ways

– Use attachments (more elegant)
● SOAP with Attachments – implemented in SAAJ
● WS-Attachments

– Base64 encoding (crude)
● Expands data size by 1.33x
● Overhead in processing (encoding & decoding)
● Easy to do!

Handling Binary Data
● Service code to return an image

● The client can (after decoding)
– Dump it to a file and link to it
– Stream it to the browser which will show the image

Graphics snapGraphics = img.getGraphics();
paint(snapGraphics);
RenderedOp image = JAI.create("AWTImage", img);

JPEGEncodeParam params = new JPEGEncodeParam();
baos = new ByteArrayOutputStream();
ImageEncoder encoder = ImageCodec.createImageEncoder(

 "JPEG", baos, params);
encoder.encode(image);
baos.close();
...
Base64 converter = new Base64();
return converter.encode(baos.toByteArray());

Large Amounts of Data

● What if we want to process 10K SD files?
● Sending it over the network can be slow
● Better solution is to send a URI which could be

– http://
– ftp://
– file://

● Similarly, if we need to return large amounts of
data, return the URI rather than the data

● This approach requires infrastructure to be
present

file:///

Using WS in a Workflow

● Workflows provide a plug-n-play approach to
performing scientific tasks

● Join atomic operations in a GUI to get some
result
– Read SMILES
– Filter molecule
– Dock molecule
– Output energy
– Rank ligands

A Taverna Workflow
A protein implicated in tumor growth is
supplied to the docking program (in this
case HSP90 taken from the PDB 1Y4
complex)

The workflow employs our
local NIH DTP database

service to search 200,000
compounds tested in human

tumor cellular assays for
similar structures to the

ligand.

Once docking is
complete, the
user visualizes the
high-scoring
docked structures
in a portlet using
the JMOL applet.

Similar structures are filtered
for drugability, and are
automatically passed to the
OpenEye FRED docking
program for docking into the
target protein.

A 2D structure is supplied for input into
the similarity search (in this case, the
extracted bound ligand from the PDB
IY4 complex)

Correlation of
docking results
and “biological
fingerprints”
across the human
tumor cell lines
can help identify
potential
mechanisms of
action of DTP
compounds

What If You Don't Have a Component?

● Web services to the rescue!
● Taverna can use WS's

– You can specify
– Scavenge them

● Provides an easy
interface to WS
invocation

● Expands your tool
kit

Things I Didn't Cover

● Namespaces
● Security

– Apache authentication + SSL is a simple way
– Secure SOAP messages – allows for digital signing

● Addressing
● Reliability
● Other SOAP toolkits

– C/C++ can use gSOAP

– Perl can use soaplite

http://www.cs.fsu.edu/~engelen/soapmain.html
http://soaplite.com/

Summary
● Writing web services is not difficult

– Setting up your server environment is harder!
● You can write new services or wrap a pre-

existing program as a service
● It can be tricky to use non-primitive objects in

IO
● Given web services, we can call them using

– a browser
– CLI or GUI programs

● We can also aggregate them using workflow
tools like Taverna

Links & Downloads

● Apache

– Web server: http://httpd.apache.org/
– Tomcat : http://tomcat.apache.org/
– AXIS : http://ws.apache.org/axis - Java and C++ bindings

● Asynchronous web services

– Asynchronous patterns
● SOAP

– Specification, Serialization
● CDK

– Homepage, Nightly builds

http://httpd.apache.org/
http://tomcat.apache.org/
http://ws.apache.org/axis
http://www-128.ibm.com/developerworks/library/ws-asynch2/index.html
http://static.userland.com/xmlRpcCom/soap/SOAPv11.htm
http://www-128.ibm.com/developerworks/webservices/library/ws-soapmap1/
http://cdk.sourceforge.net/
http://cheminfo.informatics.indiana.edu/~rguha/code/java/nightly/

Links & Downloads

● Python

– SOAPpy
– ZSI
– Webservices with Zope & Plone

● C/C++

– gSOAP
● Perl

– soaplite

http://soapy.sourceforge.net/
http://pywebsvcs.sourceforge.net/zsi.html
http://www.google.com/url?sa=t&ct=res&cd=2&url=http://plone.org/events/regional/nola05/collateral/web_services_presentation.pdf&ei=MlTfROf-Ks7oaP_31d4F&sig2=2r6Evm69iZqAhv9S1KBtBA
http://www.cs.fsu.edu/~engelen/soapmain.html
http://soaplite.com/

Links & Downloads

● IU Web Services

– http://www.chembiogrid.org/projects/proj_cdk.html
– http://www.chembiogrid.org/projects/proj_toxtree.html
– http://www.chembiogrid.org/projects/proj_cambridge.html

● Examples & Howto's

– CDK Web Services
– Setting up Apache2, Axis & Tomcat 5
– Hollow World blog

http://www.chembiogrid.org/projects/proj_cdk.html
http://www.chembiogrid.org/projects/proj_toxtree.html
http://www.chembiogrid.org/projects/proj_cambridge.html
http://cheminfo.cheminformatics.indiana.edu/~rguha/code/java/cdkws.html
http://cheminfo.cheminformatics.indiana.edu/~rguha/misc/apachetomcat.html
http://communitygrids.blogspot.com/

