The Use of a SOM to Generate QSAR Sets

Rajarshi Guha

Pennsylvania State University

Introduction

- What are QSAR sets and what role do they play?
- Set selection methods
- The construction and working of a SOM
- The overall procedure
- Application and results

The Steps of QSAR Modelling

What are QSAR Sets?

- 3 sets of molecules are required during QSAR modelling
 - Training set
 - Used during training of models
 - Best models are based on TSET statistics
 - Cross validation set
 - Used during the training of neural network models to prevent over training
 - Prediction set
 - Never used during training
 - Used to validate the final models

QSAR Set Selection Methods

- Random selection
- Activity binning
- Sphere exclusion
- Self Organizing Maps

Why Does Set Selection Matter?

- QSAR models are trained and validated using different sets
- A QSAR model tries to capture features of an entire dataset and uses those features to make predictions
- Therefore, training and validation sets should be representative of the entire dataset

Why Does Set Selection Matter?

An example - a dataset of 10 compounds:

 For the model to be able to make good predictions, both aromatic and non-aromatic compounds must be represented in the TSET

How Does an SOM Help?

- The goal is to create QSAR sets which are representative of the overall dataset
- Similar groups of molecules should be represented in the QSAR sets according to their proportions in the dataset
- Therefore we need to detect similar groups of molecules
- Enter the SOM

What is an SOM

- A SOM is an unsupervised neural network
- Some features
 - Transforms non-linear multidimensional datasets to 2D grids
 - Maintains the topology of the dataset
 - Training occurs via competition between the neurons
 - Does not require knowledge of the dependent variable
 - Can be used for detecting similarity and degrees of similarity
- It is assumed that the input patterns fall into sufficiently distinct groupings

- The steps involved in using a SOM to make QSAR sets are:
 - Construct the map
 - Train the map
 - Allow neurons to compete
 - Modify winning neurons
 - Use the map to detect classes
 - Use the classes to generate QSAR sets

How Does it Work?

Construct the map

- Square grid which wraps around at the edges (toroidal)
- Each unit on the grid is a neuron and is represented as a vector of weights
- Length of the vector equals the number of descriptors
- Neurons are initialized with random weights

How Does it Work?

Train the map

- Training examples are presented to all the units
- The units compete for selection
- The selected neuron and surrounding neighbors get modified
- Multiple iterations result in groups of units becoming sensitized to features of the input vector

Some Details of the Training Process

 The winner is the neuron which is closest to the training vector in terms of Euclidean distance

$$d_{sj} = \sqrt{\sum_{i=1}^m (s_{si} - w_{ji})}$$

- The winning neuron and neighbors are modified
- Degree of modification reduces with each training iteration
- Once all the training vectors have been presented, repeat the cycle.

Some Details of the Training Process

Modification of Neurons

- The winning neuron and *topologically* close neurons are modified
- Leads to smoothing which leads to global ordering
- The general form of modification is

$$m_i(t+1) = m_i(t) + h_{ci}(t)[x(t) - m_i(t)]$$

- $h_{ci}(t)$ is termed as the neighborhood function
- . As $t
 ightarrow \infty, h_{ci}(t)
 ightarrow 0$

Some Details of the Training Process

 A Gaussian neighborhood function was used in this study

$$h_{ci}(t) = lpha(t) \exp\left(-rac{\|r_c-r_i\|^2}{2\sigma^2(t)}
ight)$$

- $\alpha(t)$ is the learning factor and controls how much a neuron is modified
 - $\alpha(t)$ decreases with training iterations
 - This study used a constant decrement

$$lpha(t+1)=lpha(t)-0.01$$

• When $\alpha(t) = 0$ training stops

How Does it Work?

Use the map to detect classes

- Assign an arbitrary class to the first neuron
- For each neuron calculate distances to each nearest neighbor
- If the distance to a neighbor is less than a user-specified threshold, then the neighbor is in the same class as the grid point
- After class asignments of the grid neurons, use these assignments to divide the dataset into two classes

How Does it Work?

Selecting a Threshold Value

- Run the SOM once to get an idea about the distances between each neuron
- Next run the SOM multiple times setting the threshold value at 10% to 90% of the maximum distance observed in the first step
- Look for class breakups which are approximately 80 - 20

Use the SOM classes to create QSAR sets

• The Overall Procedeure

- This technique was tested with a dataset DHFR inhibitors previously studied by Mattioni et al
- 333 molecules in the dataset
- 6 sets of Dragon descriptors were used to create 6 QSAR sets
- QSAR models were generated using the ADAPT methodology for each QSAR set generated

- Most of the models did not do better than the published model
- However, 2 models did occur which were half the size of the published model
- The 2 best models were more consistent than the one published

Dragon Descriptor Set	CNN Architecture	RMS Error		
		Training	Cross Validation	Prediction
BCUT & 2D Autocorrelation	5-3-1	0.63	0.68	0.79
BCUT & Galvez Indices	5-3-1	0.62	0.62	0.71
GETAWAY	5-2-1	0.73	0.73	0.65
MoRSE & 2D Autocorrelation	5-3-1	0.63	0.63	0.68
MoRSE & GETAWAY	9-5-1	0.49	0.59	0.76
MoRSE & WHIM	6-5-1	0.60	0.61	0.65
Published	10-6-1	0.45	0.49	0.66

	Training	Cross Validation	Prediction
MoRSE & 2D Autocorrelation	0.68	0.60	0.64
MoRSE & WHIM	0.75	0.78	0.64
Published	0.83	0.78	0.64

Result (Random Sets vs SOM Sets)

	Rano	Random Sets			MoRSE - WHIM Sets		
	Mean RMSE	Std. Dev.	R^2	Mean RMSE	Std. Dev.	R^2	
TSET	0.57	0.02	0.75	0.58	0.005	0.74	
CVSET	0.59	0.03	0.73	0.57	0.0010	0.76	
PSET	0.80	0.13	0.56	0.63	0.020	0.63	

Results (Scrambled Dependant Variable)

	Scrambled		MoRSE - WHIM		
	RMSE	R^2	RMSE	R^2	
TSET	0.74	0.62	0.60	0.75	
CVSET	0.85	0.48	0.61	0.78	
PSET	0.90	0.39	0.65	0.64	

Results (Type III CNN Model Plot)

-p.28/42

Future Work

- Try and reduce the arbitrariness at various stages in the SOM
 - One possibility is to use PC's of all Dragon descriptors
 - Use a majority rules technique to decide on class memberships in a SOM
- The SOM can also be used to decide whether an unknown compound can be reliably analyzed using a QSAR model

- The SOM appears to be able to generate representative sets
- This is evidenced by
 - more consistent statistics for QSAR sets
 - smaller and simpler QSAR models
- The SOM technique represents a more rational method of designing QSAR sets

Extra Information

Outliers

Current Outlier

Original Outlier

ADAPT Methodology - Details

- Geometric Descriptors
 - Depends on 3D molecular structures
 - Molecular geometries should be optimized
 - Examples are moment of inertia and surface areas

- Topological Descriptors
 - Depends only on the
 2D molecular skeleton
 - Not always very interpretable
 - Examples are connectivity indices and molecular distance edges

- Electronic Descriptors
 - Describe features
 obtained by QM
 calculations
 - Examples are HOMO / LUMO energies and partial charges

- Hybrid Descriptors
 - These are a
 combination of two or
 more of the preceding
 types
 - The CPSA descriptors are well known hybrids describing the propensity of molecules for polar interaction

Feature Selection

Optimization Algorithms

Genetic Algorithm

The biological property is modelled by the equation

 $Property = M_1x_1 + M_2x_2 + \cdots + M_nx_n$

- A GA/SA is used to survey the reduced descriptor pool
- Best model is characterised by fewer descriptors and low RMSE
- Advantages
 - Simple, fast, interpretable
- Disadvantages
 - Biological properties rarely follow linear models

- The CNN is a fitness evaluator for the GA
- The cost function is defined as

 $COST = RMS_{tset} + 0.4 |RMS_{tset} - RMS_{cvset}|$

- Number of hidden layer neurons are determined empirically
- Advantages
 - very accurate, models non-linear relationships
- Disadvantages
 - black box, low interpretability, computationally expensive

The Anatomy of a Neural Network

