Using Quantum Dots in Fluorescence Resonance Energy Transfer Studies

Rajarshi Guha

Pennsylvania State University

Introduction

- Using organic fluorophores as labels
- A brief overview of fluorescence resonance energy transfer
- Quantum dots (QD) features and synthesis
- Combining FRET and QDs in an immunoassay technique

Organic Fluorophores

- Examples include
 - fluorescein
 - rhodamine
 - 。GFP
- Some features include
 - Wide variety of fluorophores
 - Lots of techniques available for conjugation
 - GFP's allow for the expression of fluorescent proteins

Rhodamine

Organic Fluorophores

- Organic fluorophores have several disadvantages
 - Different fluorophores require different methods of conjugation to the target molecule
 - Narrow excitation spectra
 - Broad emission bands
 - Short lifetimes
- As a result
 - Spectral overlap occurs when different labels are used together
 - Autofluorescence cannot be ignored

Fluorescence Resonance Energy Transfer

- Spectral overlap can be used constructively
- If the emission spectra of one species overlaps absorption spectra of another energy transfer can occur
- FRET is a distance dependent interaction
- Energy is transferred non-radiatively
- Can be used for qualitative and quantitative studies

Fluorescence Resonance Energy Transfer

- FRET can be observed by monitoring quenching of donor fluorescence
- Observing acceptor enhancement is possible but complicated
- Important parameters in FRET
 - Förster distance (R_o) important for lifetime calculations
 - . Orientation factor (κ^2) needed to account for anisotropy

Fluorescence Resonance Energy Transfer

- Requirements for FRET
 - Donor and acceptor should be in close proximity
 - Acceptor absorption spectrum should overlap with the donor emission spectrum
 - Donor and acceptor transition dipoles should be approximately parallel

Quantum Dots

- Quantum dots have several useful features
 - High emission quantum yields
 - Sharp emission spectra
 - Chemical stability and photostability
 - Their color is easily tunable through the whole spectrum
 - Long lifetimes & shelf life

Types of Quantum Dots

There are essentially two type of quantum dots

Simple quantum dot

Core - shell quantum dot

Synthesizing Quantum Dots

- Arrested precipitation
 - This method does not always give stable QDs and is not very scalable
- Zeolite based ion exchange
 - The zeolite structure imposes size and order constraints on the included semiconductor guest

Synthesizing Quantum Dots

Cluster fusion

- Adding S⁻² to CdS clusters can increase their size (inorganic polymerization)
- Thermal decomposition of organometallics
 - Synthesis and capping occurs simultaneously and gives monodisperse QDs

Capping (aka Surface Passivation)

- Capping is vital for stability, functionalization, and interactions with other molecules
- Common capping reagents are thiols and polyphosphates
 - mercaptoacetic acid
 - dihydrolipoic acid
 - trioctyl phosphine
- Features to consider
 - Surface density too low might lead to aggregation
 - Effect of hydrolysis on the capping molecule
 - Length of capping molecules

Application - Immunoassay

- This assay technique uses FRET to study tagged antibody - antigen interactions
- The assay is homogenous
- Inorganic fluorophores have been used to improve the technique

 Youn et al.¹ have used a Ru complex and Reactive Blue 4 as donor/acceptor to assay HSA and AHA

Emission spectra of Ru-labelled HSA in the presence of different molar equivalants of RB4-labelled AHA

Decay of intensity of Ru-labelled HSA in the absence and presence of RB4-labelled AHA

- The inorganic fluorophore approach used by Youn has a few problems
 - Synthesis of the Ru complex is time consuming
 - The complex itself is expensive
 - Quantum yield of the complex is relatively low
 - RB4 is prone to hydrophobic interactions
- Solution? Quantum Dots!

Features of a Quantum Dot Immunoassay

- Why would quantum dots help?
 - Easy to synthesize
 - QDs can be used as both donor & acceptor
 - They can be made resistant to bleaching
 - High quantum yields lead to a larger R_o
 - Lower chances of intramolecular energy transfer
 - Allows for the possibility of simultaneous assay of multiple antigen - antibody pairs

Overview of the Proposal

- Prepare core shell QDs
 - higher stability
 - Iarger band gap
- Cap the QDs
- Conjugate QDs with antigen and antibody
 - EDC condensation
- Mix the tagged antigen and antibody and monitor quenching of donor fluorescence

What Does the Assay Give Us?

- Simple detection of an antigen
- Binding kinetics
- Spatial details of the binding process
- Quantitative estimation of antigen concentration

Tagged Antigen - Antibody Interaction

Interaction of tagged HSA and AHA molecules^a

^aYoun et al., Anal. Biochem., **1995**, 232, 24-30

- Förster distances are not well known for QDs.
- The orientation factor must be considered
 - . For freely rotating fluorophores $<\kappa^2>=2/3$ can be assumed to be true. This is not so for this setup.
 - . Possible methods include using longer capping groups or estimating κ^2 using the depolarization method^a
- Multiple labelling of the donor on the antigen must be controlled

^aHaas et al., *Biochemistry*, **1978**, *17*, 5064

Conclusion

- Quantum dots are a source of inexpensive and easily configurable fluorescent labels
- The use of quantum dots in FRET studies provides many advantages over organic fluorophores
- The combination of quantum dots and FRET results in an immunoassay technique whose features include
 - high speed
 - Iow cost
 - high throughput
 - multiple applications

Extra Information

Förster Distance

Förster distance is defined by

$$R_o^6 = 8.785 imes 10^{-5} rac{\kappa^2 \phi_D J}{n^4}$$

where

- κ^2 is the orientation factor
- ϕ_D is the quantum yield of the donor
- n is the refractive index of the medium
- J is the nomalized overlap inetgral

Donor - acceptor separation, R, can be determined by

$$E=rac{R_o^6}{R_o^6+R^6}$$

• E is the transfer efficiency and can be determined from fluorescence intensities or lifetimes

$$E = 1 - rac{F_{da}}{F_d}
onumber \ E = 1 - rac{ au_{da}}{ au_d}$$

FRET & Antigen Concentration

- Let F_d be the donor fluorescence intensity
- Let the antigen antibody interaction be represented by the equation

$$A_g + A_b \stackrel{k_1}{\rightleftharpoons} A_{gb}$$

The rate of formation of the complex is given by

$$r_{bind} = k_{-1}[A_g][A_b]$$

 The rate of fluorescence quenching of the donor is given by

$$r_{quench}=-rac{dF_d}{dt}$$

FRET & Antigen Concentration

- We assume that FRET is the only cause of donor quenching and that the donor acceptor distance is constant through the observation period
- Hence we can say that

$$egin{aligned} r_{quench} & \propto & r_{bind} \ & -rac{dF_d}{dt} & \propto & k_{-1}[A_g][A_b] \ & -rac{dF_d}{dt} & = & Ck_{-1}[A_g][A_b] \end{aligned}$$

where *C* could be determined from standardized concentrations

EDC Condensation

- EDC = 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- Catalyzes the formation of amide bonds between carboxylic acids or phosphates and amines
- The derivative reacts readily with a nucleophile
- N hydroxy succinimide can be used to improve yields
- Commonly used during peptide synthesis

How Many Attached?

- We assume the protein and QD are spherical
- Protein is close packed and steric affects are ignored
- The number of proteins that can be attached is given by

$$N=0.65\left(rac{R_2^3-R_1^3}{R_p^3}
ight)$$

• R_1 is the radius of the QD, R_P is the radius of the protein and $R_2 \sim R_1 + 2R_p$