Matching QSAR Sets SPE & Clustering and Weighted/Sampled Classification

Rajarshi Guha

Penn State University

Stochastic Proximity Embedding

- Multidimensional scaling algorithm
- A stochastic form of a steepest descent algorithm
- Linear scaling (good for large datasets)
- In principle allows you to get the *intrinsic dimension* of the dataset

Stochastic Proximity Embedding

- There are two main parameters that must be set: r_c and the final embedding dimension
- Quality of embedding is measured by the Sammon stress
- Ideally, in the *intrinsic dimensionality* the stress will be 0 or very close
- Currently the optimal parameters are obtained by an exhaustive search: $.1 < r_c < 1$ and $2 < D_{emb} < D_{inp}$

Stochastic Proximity Embedding

- Strategy
 - . Find optimal r_c and $D_{
 m emb}$
 - Cluster the dataset on the reduced coordinates
 - Badly predicted points should lie outside main clusters
- Problem
 - It assumes that the dataset can be clustered well

Classification

- Unweighted LDA is very biased towards the good class
- Used the artemisinin dataset, with model descriptors (4)

TSET Confusion Matrix

	b	g	\checkmark
b	0	50	0%
g	0	111	100%

PSET Confusion Matrix

	b	g	\checkmark
b	0	4	0%
g	0	14	100%

- We can provide prior weights for the 2 classes
- First guess is to let $W_{bad} = W_{good} = 0.5$
- The good class looses out and PSET is very poorly predicted

TSET Confusion Matrix

PSET Confusion Matrix

	b	g	\checkmark
b	32	18	64%
g	73	38	34%

	b	g	\checkmark
b	4	0	100%
g	11	3	21%

What are we trying to optimize?

- True positives
- True negatives
- Overall correct
- How can we choose weights?
 - Look at overall correct vs. W_{good}
 - . Look at how true positive and true negative rates vary with W_{good}
 - Look at false positive vs true positive (ROC curve)

Plot of Weight for the Good Class vs. Overall Percentage Correct

 W_{good}

Plot of W_{good} vs. Percentage Of True Positives & True Negatives

ROC Curve

- Use the PC's (i.e., rotated data) as feature vectors
- Not apparent how many to take, so trial & error!
- However for discrimination purposes kernel-PLS has been shown to be more useful ^a
- Strategy
 - Evaulate TSET PC's
 - Find minimum number (n) of PC's that give best classification
 - Evaluate PSET PC's
 - Use n PSET PC's to classify the PSET

^aBarker et al., J. Chemom., 2003, 17, 166-173

PC Classification (Artemisinin)

PC Classification (Artemisinin)

Results using 60 PC's

TSET Confusion Matrix

	b	g	\checkmark
b	50	0	100%
g	0	111	100%

PSET Confusion Matrix

	b	g	\checkmark
b	3	1	75%
g	1	13	92%

Jarvis Patrick Clustering And Classification of Residuals

JP - Overview

- kNN based classification scheme
- Molecules are in the same class if
 - they are in each others J neighbor list
 - they have K neighbors in common
- Lots of scope for tweaking
- Fast algorithm

How Well Does JP Classify?

- How do we determine the quality of classification?
 - Look at AP similarity values within a class
 - Compare average AP similarity value between classes
- However, since the algorithm is based on similarities in descriptor space this may not carry over to similarities in AP space

	Artemisinin, TSET
No. Class	Average In-Class AP Similarity
2	У
3	0.36, 0.37, 0.40
5	b

JP - Varying J & K

Plot of Studentized Residuals Colored By JP Class Membership J = 20, K = 13

Plot of Studentized Residuals Colored By JP Class Membership (J = 20, K = 15)

- Artemisinin dataset
- Only the TSET is considered
- All reduced pool descriptors were used
- J = 20 chosen arbitrarily

Plot of Studentized Residuals Colored By JP Class Membership (J = 20, K = 14)