Matching QSAR Sets Sphere Algorithms & Atom Pairs

Rajarshi Guha

Penn State University

Sphere Algorithm

- Based on a modification of the diversity index
- In the original algorithm spheres are drawn around the TSET points
- Its aim was to pick PSET points near TSET points

Sphere Algorithm - Modification

- In this version spheres are drawn around PSET points
- It assumes that these spheres will occupy *most* of the volume encompassing the TSET points
- For a given sphere look at the TSET points lying inside it
- Can we get any useful information from these included points related to some feature of the PSET point in question?

Sphere Algorithm - Terminology

- Centreset: Set of points in ND space at which spheres are drawn
- Checkset: Set of points which are considered to lie within the spheres centered at centerset points
- APS: Atom Pair Similarity
- SEoP: Standard Error of Prediction

Sphere Algorithm - Method

Evaluate the volume enclosed by the TSET points

$$V = \prod_{j=1}^k \left(X_{max,j} - X_{min,j}
ight)$$

- Find the volume for one of the points
- Assuming this is an N dimensional sphere caclulate its radius. Optionally scale it (our friend c)
- Once we have the radius we can use the points in the centerset and draw spheres around them
- Find out how many checkset points are present in each sphere and evaluate a density for each sphere

Sphere Algorithm - Method

- The problem with this is that it is possible that a PSET point lies outside of the volume encompassing the TSET points
- So we calculate V using the whole dataset
- A further improvement is to use an occupied volume rather than raw volume
- Occupied volume is calculated using a Monte Carlo approach

The Sphere Algorithm With the Artemisinin Dataset

Sphere Algorithm - Artemisinin Dataset

- The dataset consisted of 179 molecules and 65 descriptors in the reduced pool
- The TSET had 161 molecules and PSET 18 molecules

Sphere Algorithm - Artemisinin Model

Bets model in terms of statistics. But not very impressive visually!

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-62.55550	5.29283	-11.819	< 2e-16	* * *
dN7CH.20	-0.22214	0.01311	-16.949	< 2e-16	* * *
dNSB.12	0.22423	0.02308	9.717	< 2e-16	* * *
dWTPT.2	28.90461	2.61434	11.056	< 2e-16	* * *
dMDE.14	0.13231	0.02759	4.795	3.77e-06	* * *

Residual standard error: 0.887 on 156 degrees of freedom Multiple R-Squared: 0.7096, Adjusted R-squared: 0.7021 F-statistic: 95.28 on 4 and 156 DF, p-value: < 2.2e-16

Variance Inflation Factors: dN7CH.20 dNSB.12 dWTPT.2 dMDE.14 1.624504 1.346523 1.466014 1.549218

Sphere Algorithm - Densities

Plot of Sphere Density for Each PSET Point vs. PSET Index

Sphere Algorithm - Scaling the Radius

Sphere Algorithm - Scaling the Radius

- Decreasing the radius implies that fewer TSET points will be present in the PSET spheres
- Thus as we scale the sphere radius down, only PSET molecules that are surrounded by lots of TSET molecules will have non-zero density
- Thus: as we scale the radius down, the PSET molecules that are 'closest' to the TSET should show non-zero densities
- Will these PSET points have lower SE of prediction or residuals?

Sphere Algorithm - Density, Residuals & SE's

- It appears that residuals don't really correlate well with sphere density
- SE of predictions seem to follow an inverse trend

Sphere Algorithm - Comment

- SE's can be considered as an indication of reliability of the prediction
- Large SE's indicate that the confidence limits of the prediction are large
- Thus: lower sphere densities might indicate that the prediction will not be reliable. Matches intuition!

The Sphere Algorithm With a Toy Dataset

- This was designed to provide distinct outliers as well as a few well predicted points
- 65 molecules. 57 taken from JCICS, 1998, 38, 387-394 and were all straight chain alkanes and associated isomers
- 8 molecules were randomly selected to be as different from the 57 as possible (eg. benzene, pyrrole, anthracene)
- Out of the 57 molecules, 52 were placed in the training set and 5 were placed along with the 8 external compounds in the prediction set
- The dependent variable was boiling point.

Toy Dataset - Linear Model

A 4 descriptor linear model was generated

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-381.6960	60.3677	-6.323	8.72e-08	* * *
demin.1	-43.2189	9.1003	-4.749	1.95e-05	* * *
demax.1	88.8862	10.4446	8.510	4.46e-11	* * *
deccn.1	1.2717	0.1052	12.089	4.99e-16	* * *
dSHDW.6	501.1936	136.7371	3.665	0.000627	* * *

Residual standard error: 19.82 on 47 degrees of freedom Multiple R-Squared: 0.905, Adjusted R-squared: 0.8969 F-statistic: 111.9 on 4 and 47 DF, p-value: < 2.2e-16

Variance Inflation Factors: dEMIN.1 dEMAX.1 dECCN.1 dSHDW.6 1.114556 1.486670 1.205632 1.241283

Toy Dataset - Plot

Plot of Observed vs Predicted BP (Kelvin) for the Training Set And Prediction Set (partial)

Observed

Toy Dataset - Plot

Plot of Observed vs Predicted BP (Kelvin) for the **Training Set And Prediction Set** 1000 57 🔺 ● TSET ▲ PSET **6**0 800 ▲ 65 600 Predicted 400 64 🔺 61 200 ▲ 59 Q_{5} 0 ▲ 58 50 100 150 0 200 250 300 350

Observed

Sphere Algorithm - Densities

Sphere Algorithm - Zero Density Compounds

- The compounds with zero densities are expected to have very little in common with the majority of the dataset
- The table below indicates that this seems to be true (they are all from the 8 external compounds)

Dan	Name	
56	benzene	
57	benzoic acid	
60	bromomethane	
64	anthracene	
65	acetic acid	

Sphere Algorithm - High Density Compounds

- The compounds with the highest densities are expected to be much more similar to the majority of the dataset
- From the plot, the highest compounds turn out to be from the original dataset

Dan	Name
25	3-methylheptane
29	2,4-dimethylhexane
44	4-methyloctane
62	2,2,3-trimethylhexane

Sphere Algorithm - High Density Compounds

- It is interesting to see that decane (59) has an average density
- Encouraging since the training set contains upto C₉ but decane is still a straight chain alkane and should not be entirely unrecognizable
- Hence the medium density value

Sphere Algorithm - Scaling the Radius

Variation of Density With Scaled Radii

Sphere Algorithm - Density & Errors

Sphere Density

Sphere Algorithm - Density & Residual

Sphere Density

Sphere Algorithm - Comments

- Unlike the artemisinin dataset, the behavior of sphere density with residual and SEoP for the toy dataset are quite similar.
- The general trend of lower density and higher residual/error is present
- However this trend is quite obscured in the case of the toy dataset

The Sphere Algorithm & Atom Pairs

Sphere Algorithm - Using Atom Pairs

- The sphere algorithm provides us with a set of TSET points surrounding a PSET point
- Ideally, we would like to avoid use of specific descriptors when making the spheres and analyzing their contents
- Atom pairs allow us to look at the contents of the spheres

Sphere Algorithm - Atom Pair Method

- Create spheres as before
- Calculate atom pair similarities between the PSET point and all the TSET points in the sphere
- Calculate atom pair similarities between the PSET point and all TSET points outside the sphere
- It is expected that

 $\overline{AP}_{inside} > \overline{AP}_{outside}$

Sphere / AP - Toy Dataset

Barplots of AP Similarity Values Between Each PSET Point And TSET Members Inside And Outside its Sphere

TCSET Members

TCSET Members

TCSET Members

TCSET Members

Sphere / AP - Comments on Distribution

- Only the distributions for the 4 PSET members that had the most TSET members in their spheres are shown
- A number of PSET members had no TSET members in their spheres (cf. density plots)
- Dan 63 was anomalous since it only had 2 points within its sphere and the AP similarity values between both points was 0 (in fact all APS values are 0 for 63 - pyrrole)

Sphere / AP - Decane

TCSET Members

- The plot for decane shows that even though it has average
 TSET density the average
 APS value is still greater inside
 the sphere than outside
 - The real test is whether the averaged APS values can correlate with residuals or SE's of predictions

Sphere / AP - Correlation to Residuals

Average AP Similarity

Sphere / AP - Correlation to SE of Prediction

Average AP Similarity

Sphere / AP - Removing Empty PSET Spheres

- Some of the PSET points had no TSET members around them
- Thus calculating average APS value was not possible and were set to zero
- However, it makes sense not to include those points

Plot of Average AP Similarity for Each PSET Sphere vs. Standard Error of Prediction for PSET Points

Sphere / AP - Artemisinin Dataset

Barplots of AP Similarity Values Between High Density PSET Points And TSET Members Inside And Outside Their Sphere

TCSET Members

TCSET Members

TCSET Members

Sphere / AP - Artemisinin Dataset

Barplots of AP Similarity Values Between Low Density PSET Points And TSET Members Inside And Outside Their Sphere

TCSET Members

TCSET Members

TCSET Members

TCSET Members

Sphere / AP - Artemisinin Residuals & SEoP

- The correlation to residuals is quite poor but there appears to be an inverse relation to the SEoP
- However, any trend in either plot is obscured by the several 'outliers'

- The APS values seem to be doing their job
- The problem with APS values is that for PSET points with empty spheres they are undefined
- The APS values appear to correlate better with SE of predictions rather than residuals
- In either case the trends are obscured
 - Could too many TSET points skew the average APS value for a PSET point?
- Overall, it seems that sphere densities appear to provide more direct & clear information about similarity and correlation to residuals/SEoP

Next Step

- See whether molecular fingerprints can help us
- Rather than consider all TSET points in the sphere, consider a subset - kNN style