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Normalizing Distances & Angles

Normalization does’nt seem to affect the histograms or
the Smirnov statistic

Autoscaling does’nt make any significant changes
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Smirnov Statistics For Normalized Sets

Angles
Metric D(299,34) Q(0.95) H0

Euclidean 0.2015 0.2461 Accept
Manhattan 0.1433 0.2461 Accept
Pearson 0.1513 0.2461 Accept
Chebyshev 0.2124 0.2461 Accept

Distances
Euclidean 0.7553 0.2461 Reject
Manhattan 0.7024 0.2461 Reject
Pearson 0.6449 0.2461 Reject
Chebyshev 0.7820 0.2461 Reject

– p.3/29



Normalizing Distances & Angles

Euclidean Metric

Sum of 3NN Distances
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Normalizing Distances & Angles

Euclidean Metric

Sum of 3NN Angles
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Confirming Dissimilarities

To see whether the Smirnov test is actually working the
PSET from the tutorial dataset was compared to TSET’s
from the DHFR data.

For both angle and distance data the statistic indicates
that the two sets are not similar (with p-value ≈ 10−16 !)
in some cases.

However depending on the descriptor used, the test also
declares the two sets to be similar
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Confirming Dissimilarities

TSET Angles Distances

D Q(0.95) D Q(0.95)

DHFR - BCUT & Auto 0.9617 0.2495 1.0000 0.2495

DHFR - MoRSE & Auto 0.2846 02.495 0.1554 0.2495

DHFR - Galvez 0.1249 0.2495 0.1554 0.2495

DHFR - Getaway 0.1623 0.2495 0.1810 0.2495
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Examining the Mahalanobis Metric

Euclidean Metric

Sum of 3NN Angles
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Atom Pairs
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How Can We Use Atompairs?

Ideally we would like to use them as a similarity measure
and correlate the similarity with the model performance

The strategy used was to calculate similarity values (SV)
for each PSET molecule with all the molecules in the
TSET

With the matrix of SV’s we can investigate
distribution of SV’s
relations between MLR residuals and SV’s
partitioning the SV’s
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Distributions of SV’s

For the atom ID calculations, Carharts method and an
atomic weight method were used

A large number of SV’s ended up being 0 in both cases
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Distribution of SV’s
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MLR Residuals & SV’s
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Fuzzy Analysis Clustering

In fuzzy clustering each observation is spread out over
multiple clusters

We denote u(i, v) be the membership of observation i to
cluster v

The Fanny algorithm minimizes

k
∑

v=1





∑

i,j

u(i, v)2u(j, v)2d(i, j)/ 2
∑

j

u(j, v)2





where n is the number of observations, k is the number
of clusters and d(i, j) is the dissimilarity between
observations i and j
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Fuzzy Analysis Clustering

What are we partitioning?
We consider the individual SV’s for each PSET
molecule as a variable
The Fanny algorithm uses these to calculate
dissimilarity values

Why partition?
It is possible that a group of PSET molecules appears
to match the TSET in some way. Hopefully the Fanny
algorithm will be able to use the similarity values to
detect this
Investigate any correlations between cluster members
and their MLR residuals
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Fuzzy Analysis Clustering
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Fuzzy Analysis Clustering

The algorithm was instructed to generate two clusters

Increasing k to 3 or 4 did not lead to more clusters.
However k = 6 did generate 3 clusters

Dunn’s partition coefficient was 0.5 (higher indicates
crisper clustering)

The silhouette coefficient is 0.34 indicating a weak,
possibly artifical cluster structure

There does not appear to be any distinct correlation
between cluster membership and MLR residuals
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Silhouette Plot of the Fanny Clusters
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Cluster Memberships and MLR Residuals
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Other Clustering/Partitioning Algorithms

Methods investigated include
Hierarchical Clustering
Agglomerative Clustering
Divisive Clustering

All methods divided the SV’s into more or less the same
clusters
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A Sphere Algorithm

The general idea was to draw a TSET and a PSET
sphere and investigate whether any properties of this
approach would show any correlation with an MLR
model
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Summary of the Algorithm

Using the molecules in the TSET
Find the centroid of the TSET
Find the TSET member that is furthest from the TSET
(using Euclidean distance)
This distance represents the radius of the sphere
enclosing the TSET (denoted as Rtset)

Repeat for the PSET to obtain Rpset
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Using the Spheres

A method similar to the molecular diversity index was
evaluated

For the PSET
Find all PSET members whose distance from the
TSET centroid is less than Rtset

Evaluate the ratio of number of PSET members
satisfying the above condition to the total number of
PSET members
Denote the ratio as It

Repeat the above for the TSET to obtain the ratio Ip
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Results of the Sphere Approach

In general one of It or Ip is always 1

There does’nt seem to be any obvious correlation:

R2 I

Data Num. Desc. TSET PSET T P

Artemisinin 4 0.68 0.77 1.00 0.93

glass - BCUT 10 0.86 0.67 0.96 1.00

glass - BCUT 4 0.72 0.59 1.00 0.98

dhfr - BCUT 3 0.36 0.34 1.00 0.96

random 4 0.31 0.04 1.00 0.95
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Silhouettes
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Viewing the Quality of a Clustering

Silhouettes are graphical means of viewing a clustering

Each cluster is represented by a silhouette

The silhouette shows which objects lie within the cluster
and which ones are intermediate

This method is useful when dissimilarities are on a ratio
scale
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Viewing the Quality of a Clustering

For each object, i, we define a term s(i)

First, let A be the cluster to which i is assigned

The let a(i) be the average dissimilarity of i to all other
objects in A

Then consider a cluster C (C 6= A)

Let d(i, C) be the average dissimilarity of i to all objects
in C, and compute this for all C 6= A

Let b(i) = min d(i, C)
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Viewing the Quality of a Clustering

Finally

s(i) =
b(i) − a(i)

max{a(i), b(i)}

Thus
−1 ≤ s(i) ≤ 1
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Viewing the Quality of a Clustering

Some properties of s(i) include
An s(i) close to 1 indicates that i was well classified
An s(i) around 0 indicates that i’s membership is not
certain and a value close to -1 indicates a
misclassification
In a silhoulette plot, wide silhouettes indicate good
clustering
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