Matching QSAR Sets Using Non Parametric Statistics as QSAR Tools

Rajarshi Guha

Penn State University

- The underlying goal is to see whether we can match PSET points to the TSET
- Ideally we would like to see whether a given PSET point is similar to the TSET in general
- Methods to achieve this include
 - Atom Pair Fragments
 - Daylight Fingerprints
 - D Holograms
 - SOM
 - Statistical Methods?

- The problem with statistical methods is that we cannot use single PSET points and make decisions
- These methods consider groups of points, i.e., distributions
- Thus these methods can decide whether 2 distributions are similar or whether a given distribution matches some assumed distribution with estimated parameters

Nonparametric Statistics - Overview

- Makes few assumptions about the model
- Essentially provides approximate probabilities to exact models
- Less computational work
- Ideally non parametric statistics are distribution free, but this is not always so.

- Hypotheses are stated in terms of the population
- A test statistic is selected
- A decision rule is created on the basis of the possible values of the statistic to decide whether to accept or reject the hypothesis
- The sample is used to calculate the test statistic and the decision rule is applied to accept or reject the hypothesis

- Data
 - Data consists of N independent observation
 - . The data are binned into c classes
 - Each class has a frequency of $O_j, \ j=1,2,\ldots,c$
- Assumption
 - A random sample
 - Measurement scale is at least nominal
- Hypotheses:

 $egin{array}{ll} H_0: & F(x)=F^*(x) & ext{for all x} \ H_1: & F(x)
eq F^*(x) & ext{for at least one x} \end{array}$

Test Statistic

- . Assuming $F^{\ast}(x)$ is the distribution function, let p_{j}^{\ast} be the probability that a random observation falls in class j
- . Define E_j , the expected frequency of class j when H_0 is true as

$$E_j=p_j^*N,\ j=1,2,\ldots,c$$

The statistic T is given by

$$T=\sum_{j=1}^c rac{(O_j-E_j)^2}{E_j}$$

Decision Rule

- . The approximate distribution of T for large samples is the χ^2 distribution
- . Critical region corresponds to values of T greater than $x_{(1-\alpha)},$ where α is the level of significance.
- The d.o.f is given by c k + 1, where c is the number of non empty bins and k is the number of estimated parameters
- . Reject H_0 if $T > x_{(1-lpha)}$

- Some features include
 - The statistic depends on the nature of binning
 - If a class frequency is less than 5 the class should be combined with an adjacent class
 - . The test justifies the use of $F^*(x)$ as a good approximation to the true distribution by accepting H_0
 - Essentially it assumes a distribution for a set A and then indicates whether a set B matches that distribution

Kolmogorov - Smirnov Statistics

- This class of test statistics can check
 - whether a sample fits a certain distribution
 - whether two or more samples have similar distributions
- Though similar in intent to the χ^2 test, this class of statistics have higher **power**
- Example statistics include
 - Kolmogorov Goodness of Fit
 - Shapiro Wilk Test for Normality
 - Smirnov Test
 - Cramer von Mises Two Sample Test

- Also termed as the Kolmogorov Smirnov Two Sample Test
- Determines whether two samples have the same population distribution function
- Consistent against all types of differences between the two distribution functions

Smirnov Test

Data

- Two independant random samples of size n and m denoted by X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m
- . Unknown distribution functions denoted by ${\cal F}(x)$ and ${\cal G}(x)$
- Assumptions
 - Random samples
 - Independant samples
 - Measurement scale is ordinal
 - For the test to be exact the random variables should be continuous

Hypotheses

- $egin{array}{ll} H_0: & F(x) = G(x) & -\infty < x < \infty \ H_1: & F(x)
 eq G(x) & ext{for at least one x} \end{array}$
- Test Statistic

$$T = \max_x |S_1(x) - S_2(x)|$$

where $S_1 \& S_2$ are the empirical distribution functions

Decision Rule

- Reject H_0 at level of significance α if $T > q_{(m,n)}$.
- Depending on whether m equals n and the level of significance, q can be evaluated from different large sample approximations.

Applying the Statistics

- Select a dataset.
- Perform a kNN calculation on the TSET and PSET.
- Rather than look at predicted values, look at kNN distances & angles.
- Investigate the statistics of the distances and angles of the TSET & PSET for a given dataset.
- Attempt to link the statistics to model performance

kNN Distance & Angles

- For each molecule in a given set, the sums and average of the distances to the n nearest neighbors were recorded.
- Sums and the average of the angles were also recorded.
- For angles, n was restricted to 3 simplifies the number of angles to evaluate.

Results

- A set of descriptor values and dependant variable values were randomly generated for 233 molecules
- A Gaussian distribution ($\sigma=1.0, \mu=0.0$) was used
- A descriptor length of 8 was used
- TSET, CVSET, PSET were generated by setbin.py
- Multiple 3NN runs were carried out with varying distance metrics

Random Data - Sums of Distances

Euclidean Metric

Sum of 3NN Distances (per molecule) for Varying Distance Metrics

Sum of 3NN Distances

Sum of 3NN Distances

Pearson Metric

Chebyshev Metric

Random Data - Averages of Distances

Average of 3NN Distances (per molecule) for Varying Distance Metrics

50

Average of 3NN Distances

Manhattan Metric

Pearson Metric

Average of 3NN Distances

Chebyshev Metric

Average of 3NN Distances

Random Data - Sums of Angles

Sum of 3NN Angles (per molecule) for Varying Distance Metrics

Sum of 3NN Angles

Manhattan Metric

Sum of 3NN Angles

Pearson Metric

Chebyshev Metric

Random Data - Averages of Angles

Averge of 3NN Angles (per molecule) for Varying Distance Metrics

Averge of 3NN Angles

Manhattan Metric

Averge of 3NN Angles

Pearson Metric

Chebyshev Metric

DHFR: BCUT - 2D Auto.

- Since a number of models exist the descriptors for the best model were chosen
- 5 descriptors chosen: N5CH, N7CH, NAB, WPSA, CHAA
- The model R^2 (TSET) was 0.45
- All the molecules were utilitzed by the kNN routine

DHFR - Sums of Distances

Sum of 3NN Distances (per molecule) for Varying Distance Metrics

-2.92

DHFR - Averages of Distances

Average of 3NN Distances (per molecule) for Varying Distance Metrics

DHFR - Sums of Angles

Sum of 3NN Angles (per molecule) for Varying Distance Metrics

Sum of 3NN Angles

Manhattan Metric

Pearson Metric

Chebyshev Metric

DHFR - Averages of Angles

Averge of 3NN Angles (per molecule) for Varying Distance Metrics

Averge of 3NN Angles

Euclidean Metric

Averge of 3NN Angles

Chebyshev Metric

Averge of 3NN Angles

DHFR: GETAWAY

- Since a number of models exist the descriptors for the best model were chosen
- 10 descriptors chosen: N5CH, <OLC, NDB, WTPT, PND, elec, WNSA, CHAA2, CHAA3, SCAA
- The model R^2 (TSET) was 0.53
- All the molecules were utilitzed by the kNN routine

DHFR - Sums of Distances

Sum of 3NN Distances (per molecule) for Varying Distance Metrics

Pearson Metric

Chebyshev Metric

DHFR - Averages of Distances

Average of 3NN Distances (per molecule) for Varying Distance Metrics

Pearson Metric

40

DHFR - Sums of Angles

Sum of 3NN Angles (per molecule) for Varying Distance Metrics

Euclidean Metric

Manhattan Metric

Sum of 3NN Angles

Pearson Metric

Chebyshev Metric

DHFR - Averages of Angles

Averge of 3NN Angles (per molecule) for Varying Distance Metrics

Averge of 3NN Angles

Euclidean Metric

Manhattan Metric

Averge of 3NN Angles

Pearson Metric

Chebyshev Metric

Averge of 3NN Angles

Smirnov Test Results - Random Data

 Dataset was Random and sums of 3NN distances were used

Metric	D(198,36)	Q(0.95)	H_0
Euclidean	0.6288	0.2464	Reject
Manhattan	0.5657	0.2464	Reject
Pearson	0.7652	0.2464	Reject
Chebyshev	0.6263	0.2464	Reject

 Clearly the original distribution of the descriptors in the two sets need not be carried over into subsequent calculations

Smirnov Test Results - Random Data

 Dataset was Random and sums of 3NN angles were used

Metric	D(198,36)	Q(0.95)	H_0
Euclidean	0.2399	0.2464	Accept
Manhattan	0.1717	0.2464	Accept
Pearson	0.2247	0.2464	Accept
Chebyshev	0.3056	0.2464	Reject

 Thus characterization of the distribution depends on which variable we are looking at (distance or angles) as well as type of metric used

Smirnov Test Results - DHFR Data

 Dataset was DHFR - BCUT/Auto and sums of 3NN distances were used

Metric	D(299,34)	Q(0.95)	H_0
Euclidean	0.6087	0.2461	Reject
Manhattan	0.6154	0.2461	Reject
Pearson	0.7458	0.2461	Reject
Chebyshev	0.6087	0.2461	Reject

Smirnov Test Results - DHFR Data

 Dataset was DHFR - BCUT/Auto and sums of 3NN angles were used

Metric	D(299,34)	Q(0.95)	H_0
Euclidean	0.1951	0.2461	Accept
Manhattan	0.1314	0.2461	Accept
Pearson	0.0913	0.2461	Accept
Chebyshev	0.1815	0.2461	Accept

DHFR - BCUT/Auto - Setwise Histograms

Sum of 3NN Distances (per molecule) for Varying Distance Metrics

(Upper row is TSET and bottom row is PSET)

DHFR - BCUT/Auto - Setwise Histograms

Sum of 3NN Angles (per molecule) for Varying Distance Metrics

(Upper row is TSET and bottom row is PSET)

Smirnov Test Results - Tutorial Data

 Dataset was taken from the tutorial and sums of 3NN angles were used

Metric	D(235,42)	Q(0.95)	H_0
Euclidean	0.1629	0.2278	Accept
Manhattan	0.0892	0.2278	Accept
Pearson	0.1900	0.2278	Accept
Chebyshev	0.1672	0.2278	Accept

Tutorial - Setwise Histograms

Sum of 3NN Angles (per molecule) for Varying Distance Metrics

(Upper row is TSET and bottom row is PSET)

Correlating Distributions to Models

- We want to correlate the distribution statistics to the model performance
 - The value of the Smirnov test depends on the length of the two distributions.
 - Similarly for the 0.95 quantile value
 - The best distribution statistic to use is probably the p-value of the Smirnov test
 - Model features to correlate to include R^2 and RMSE
 - Another possible model feature(s) that might be correlated with are properties of the residuals such as distribution

Correlating Distributions to Models

– p.42/4

- There does'nt seem to be much of a difference between sums and averages.
- It appears that angles are more evenly distributed than distances.
- The angle distribution appears to be more *normal* than the distance distributions
- It appears that sets having a more *normal* distribution work better in the KS test
- This statistical approach does'nt seem to help us reach the goal of looking at single points :(

- Statistical measures would only be useful if we consider groups of PSET points rather than individual points
- Evaluate a similarity measure, A
 - Atom Pair
 - SOM
- Use A to calculate similarity between PSET point(s) & TSET
 - Reduce PSET TSET similarities to one value?
 - Utilize the mutiple PSET TSET similarity values?
- Link A to the performance of the model
 - Look at the trend of residual vs similarity value

Extra Information

χ^2 Goodness of Fit

Calculation of expected value for a class

$$E_j = N \left[F(Y_u) - F(Y_l)
ight]$$

- F is the cumulative distribution function for the distribution being tested
- $Y_u \& Y_l$ are the upper and lower limits of the j'th class
- N is the sample size