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What Are We Matching?

The underlying goal is to see whether we can match
PSET points to the TSET

Ideally we would like to see whether a given PSET point
is similar to the TSET in general

Methods to achieve this include
Atom Pair Fragments
Daylight Fingerprints
2D Holograms
SOM
Statistical Methods?
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Statistical Methods

The problem with statistical methods is that we cannot
use single PSET points and make decisions

These methods consider groups of points, i.e.,
distributions

Thus these methods can decide whether 2 distributions
are similar or whether a given distribution matches some
assumed distribution with estimated parameters
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Nonparametric Statistics - Overview

Makes few assumptions about the model

Essentially provides approximate probabilities to exact
models

Less computational work

Ideally non parametric statistics are distribution free,
but this is not always so.
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Hypothesis Testing

Hypotheses are stated in terms of the population

A test statistic is selected

A decision rule is created on the basis of the possible
values of the statistic to decide whether to accept or
reject the hypothesis

The sample is used to calculate the test statistic and the
decision rule is applied to accept or reject the hypothesis
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χ2 Goodness of Fit Test

Data
Data consists of N independant observation
The data are binned into c classes
Each class has a frequency of Oj, j = 1, 2, . . . , c

Assumption
A random sample
Measurement scale is at least nominal

Hypotheses:

H0 : F (x) = F ∗(x) for all x

H1 : F (x) 6= F ∗(x) for at least one x
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χ2 Goodness of Fit Test

Test Statistic
Assuming F ∗(x) is the distribution function, let p∗

j be
the probability that a random observation falls in class
j

Define Ej, the expected frequency of class j when
H0 is true as

Ej = p∗
jN, j = 1, 2, . . . , c

The statistic T is given by

T =
c∑

j=1

(Oj − Ej)
2

Ej
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χ2 Goodness of Fit Test

Decision Rule
The approximate distribution of T for large samples is
the χ2 distribution
Critical region corresponds to values of T greater
than x(1−α), where α is the level of significance.

The d.o.f is given by c − k + 1, where c is the number
of non empty bins and k is the number of estimated
parameters
Reject H0 if T > x(1−α)
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χ2 Goodness of Fit Test

Some features include
The statistic depends on the nature of binning
If a class frequency is less than 5 the class should be
combined with an adjacent class
The test justifies the use of F ∗(x) as a good
approximation to the true distribution by accepting H0

Essentially it assumes a distribution for a set A and
then indicates whether a set B matches that
distribution
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Kolmogorov - Smirnov Statistics

This class of test statistics can check
whether a sample fits a certain distribution
whether two or more samples have similar
distributions

Though similar in intent to the χ2 test, this class of
statistics have higher power

Example statistics include
Kolmogorov Goodness of Fit
Shapiro Wilk Test for Normality
Smirnov Test
Cramer von Mises Two Sample Test
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Smirnov Test

Also termed as the Kolmogorov Smirnov Two Sample
Test

Determines whether two samples have the same
population distribution function

Consistent against all types of differences between the
two distribution functions
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Smirnov Test

Data
Two independant random samples of size n and m

denoted by X1, X2, . . . , Xn and Y1, Y2, . . . , Ym

Unknown distribution functions denoted by F (x) and
G(x)

Assumptions
Random samples
Independant samples
Measurement scale is ordinal
For the test to be exact the random variables should
be continuous
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Smirnov Test

Hypotheses

H0 : F (x) = G(x) −∞ < x < ∞

H1 : F (x) 6= G(x) for at least one x

Test Statistic

T = max
x

|S1(x) − S2(x)|

where S1 & S2 are the empirical distribution functions
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Smirnov Test

Decision Rule
Reject H0 at level of significance α if T > q(m,n).

Depending on whether m equals n and the level of
significance, q can be evaluated from different large
sample approximations.
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Applying the Statistics

Select a dataset.

Perform a kNN calculation on the TSET and PSET.

Rather than look at predicted values, look at kNN
distances & angles.

Investigate the statistics of the distances and angles of
the TSET & PSET for a given dataset.

Attempt to link the statistics to model performance
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kNN Distance & Angles

For each molecule in a given set, the sums and average
of the distances to the n nearest neighbors were
recorded.

Sums and the average of the angles were also recorded.

For angles, n was restricted to 3 - simplifies the number
of angles to evaluate.
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Results
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Random Data

A set of descriptor values and dependant variable values
were randomly generated for 233 molecules

A Gaussian distribution (σ = 1.0, µ = 0.0) was used

A descriptor length of 8 was used

TSET, CVSET, PSET were generated by setbin.py

Multiple 3NN runs were carried out with varying distance
metrics
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Random Data - Sums of Distances
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Random Data - Averages of Distances
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Random Data - Sums of Angles
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Random Data - Averages of Angles
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DHFR: BCUT - 2D Auto.

Since a number of models exist the descriptors for the
best model were chosen

5 descriptors chosen: N5CH, N7CH, NAB, WPSA,
CHAA

The model R2 (TSET) was 0.45

All the molecules were utilitzed by the kNN routine
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DHFR - Sums of Distances
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DHFR - Averages of Distances
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DHFR - Sums of Angles
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DHFR - Averages of Angles
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DHFR: GETAWAY

Since a number of models exist the descriptors for the
best model were chosen

10 descriptors chosen: N5CH, <OLC, NDB, WTPT, PND,
elec, WNSA, CHAA2, CHAA3, SCAA

The model R2 (TSET) was 0.53

All the molecules were utilitzed by the kNN routine
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DHFR - Sums of Distances
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DHFR - Averages of Distances
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DHFR - Sums of Angles
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DHFR - Averages of Angles
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Smirnov Test Results - Random Data

Dataset was Random and sums of 3NN distances were
used

Metric D(198,36) Q(0.95) H0

Euclidean 0.6288 0.2464 Reject
Manhattan 0.5657 0.2464 Reject
Pearson 0.7652 0.2464 Reject
Chebyshev 0.6263 0.2464 Reject

Clearly the original distribution of the descriptors in the
two sets need not be carried over into subsequent
calculations
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Smirnov Test Results - Random Data

Dataset was Random and sums of 3NN angles were
used

Metric D(198,36) Q(0.95) H0

Euclidean 0.2399 0.2464 Accept
Manhattan 0.1717 0.2464 Accept
Pearson 0.2247 0.2464 Accept
Chebyshev 0.3056 0.2464 Reject

Thus characterization of the distribution depends on
which variable we are looking at (distance or angles) as
well as type of metric used
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Smirnov Test Results - DHFR Data

Dataset was DHFR - BCUT/Auto and sums of 3NN
distances were used

Metric D(299,34) Q(0.95) H0

Euclidean 0.6087 0.2461 Reject
Manhattan 0.6154 0.2461 Reject
Pearson 0.7458 0.2461 Reject
Chebyshev 0.6087 0.2461 Reject
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Smirnov Test Results - DHFR Data

Dataset was DHFR - BCUT/Auto and sums of 3NN
angles were used

Metric D(299,34) Q(0.95) H0

Euclidean 0.1951 0.2461 Accept
Manhattan 0.1314 0.2461 Accept
Pearson 0.0913 0.2461 Accept
Chebyshev 0.1815 0.2461 Accept
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DHFR - BCUT/Auto - Setwise Histograms
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DHFR - BCUT/Auto - Setwise Histograms
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Smirnov Test Results - Tutorial Data

Dataset was taken from the tutorial and sums of 3NN
angles were used

Metric D(235,42) Q(0.95) H0

Euclidean 0.1629 0.2278 Accept
Manhattan 0.0892 0.2278 Accept
Pearson 0.1900 0.2278 Accept
Chebyshev 0.1672 0.2278 Accept
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Tutorial - Setwise Histograms
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Correlating Distributions to Models

We want to correlate the distribution statistics to the
model performance

The value of the Smirnov test depends on the length
of the two distributions.
Similarly for the 0.95 quantile value
The best distribution statistic to use is probably the
p-value of the Smirnov test
Model features to correlate to include R2 and RMSE
Another possible model feature(s) that might be
correlated with are properties of the residuals such as
distribution
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Correlating Distributions to Models
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Observations

There does’nt seem to be much of a difference between
sums and averages.

It appears that angles are more evenly distributed than
distances.

The angle distribution appears to be more normal than
the distance distributions

It appears that sets having a more normal distribution
work better in the KS test

This statistical approach does’nt seem to help us reach
the goal of looking at single points :(
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General Plan

Statistical measures would only be useful if we consider
groups of PSET points rather than individual points

Evaluate a similarity measure, A

Atom Pair
SOM

Use A to calculate similarity between PSET point(s) &
TSET

Reduce PSET - TSET similarities to one value?
Utilize the mutiple PSET - TSET similarity values?

Link A to the performance of the model
Look at the trend of residual vs similarity value
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Extra Information
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χ2 Goodness of Fit

Calculation of expected value for a class

Ej = N [F (Yu) − F (Yl)]

F is the cumulative distribution function for the
distribibution being tested
Yu & Yl are the upper and lower limits of the j’th class
N is the sample size
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