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Broad Goals

Develop methods and tools that facilitate probe development
- MLSCN centers and to broader user groups
Understand and possibly predict cytotoxicity

- Utilizing MLSCN screening data and external data
- Characterize and visualize various screening results

- Relate screening data to known information

Model and predict acute toxicity in animals
- Relate large cytotoxicty data sets to animal toxicity(?)

Modelling protocols to handle the characteristics of HTS data
- Large datasets, imbalanced classes, applicability

Make models publicly available

- For use in multiple scenarios and accessible by a variety of methods



Cytotoxicity and animal toxicity

* Characterize toxicity datasets
- Structurally and by activity (active chemical classes)
* Are cytotoxicity and animal toxicity related:

- For which structural classes and mechanism of action does
and does not cytotoxicity relate to animal toxicity?

* Model cytotoxicity and animal toxicity
- Can we identify structural features correlated to toxicity?

- How do we evaluate model applicability?
- How do we deploy our final models?



Datasets

* Animal Acute Toxicity Data was extracted from the
ToxNet database (available from MDL)

- Selected only LD50 data for mouse and rat and three routes of administration

- Summarized LD50 data by structure, species and route
(140,808 LD50 data points, 103,040 structures)

- Classified into Toxic/Nontoxic using a cutoff

* Cytotoxicity Data was taken as published in PubChem
from Scripps and NCGC

- Scripps Jurkat cytotoxicity assay
(59,805 structures with %Inhib, 801 IC50 values)

- NCGC data from PubChem for 13 cell lines (non-MLSMR structures):
summarized multiple sample data by unique structures and extracted IC50
data: 1,334 structure, 13 x 1,334 IC50 values for different cell lines
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Structure Sets: Fingerprint Similarity

1000 e on o

other

B MLSHR

= Towket
W MCGE

-300

80%
70%

Pl W I @
o o o o o
R I )

10%

200 100 0

MLSMR

N

oo 01 02 03 04 05 06 07 08 09 10

[ sim_Toxnet M sSim_nCGc |

% of samples

60%

o
=
&

-
=
&

X
=
&

)
=
&

10%

100 200

% /i/ N

oo 01 02 03 04 05 06 07 08 09 10

[M sim_wLsmR B Sim_NCoE |

% of samples

70%

[ T R L
o o o o o
& FE # F &R

10%

* Only a small fraction of MLSMR structures
are similar to ToxNet structures; and vice
versa; 4 to 5 % of MLSMR and ToxNet have
at least one >50 % similar structure to each

* NCGC structures are much more similar to
ToxNet (86% >50 % max similar) than
MLSMR (9% >50 % max similar)
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Structure Space - BCUTS
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* But BCUTS descriptors are more relevant to
diversity than similarity
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Examples of LD50 toxic classes
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NCGC Cell toxicity

data examples
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Cytotoxicity and acute LD50 toxicity
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Modeling Protocol
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Modeling Protocol

* Descriptors

- 1052 bit BCI fingerprints
- Our interest is in fragments indicative of toxicity

- We don't know the exact mechanisms and thus
cannot effectively select mechanism-specific
descriptors

von Korff, M. and Sander, T., J. Chem. Inf. Model., 2006, 46(2), 536-544
Casalegno, M. et al., Chem. Res. Tox., 2005, 18(4), 740-746
von der Ohe, P.C. et al., Chem. Res. Tox., 2005, 18(3), 536-555



Modeling Protocol

* Random forest models for each dataset
- Avoids feature selection

- ldentify important features

* We use a sampling procedure for the individual
models, to avoid imbalanced classification

- We take all toxics and an equal number of non-toxics

- Repeat this 10 times, always keeping the toxics
constant

* Each model is built on a training set
* All models tested on a fixed prediction set



Modeling Protocol

* We end up with 6 random forest ensembles

* Within a given ensemble we find the 100 most
important features over all 10 models

* Use these features to develop a Naive Bayes
model ensemble

- Mainly used to see whether the important subset is
better than using all 1052 features



True positive rate
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Predictive Performance (Random Forest)
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Scripps Cytotoxicity Models

* 57,469 valid structures
* 775 structures with measured IC50

- Skipped 26 structures that BCI could not parse
* How do we model this dataset?

- Use all data. Very poor results

- Use the sampling procedure to get an ensemble of
models

- Consider just the 775 structures



Scripps Cytotoxicity Models

First considered the 775 structures
Evaluated 1052 bit BCI fingerprints

Selected a cutoff plC50
- >= 5.5 - toxic
- < 5.5 — nontoxic

Used sampling to
create 10-member
ensemble

Number of Structures

Nontoxic

Toxi




Scripps Cytotoxicity Models

* % correct m =
(ensemble average) = 69% o |
* % correct £ L4
(consensus) = 71% ‘o’?ﬁ
Nontoxic Toxic N
NontOXiC 39 1 7 g 0.0 0!2 O!4 0!6 0!8 1.0
TOXIC 1 5 41 False Positive Rate

* Not very good
performance

Rate
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Do More Negatives Help?

* Include 10,000 structures, randomly selected

- Primary data, assumed to be nontoxic
* Selected a cutoff pIC50

- >= 5.0 - toxic

10000

8000

- < 5.0 — nontoxic

6000

* Used sampling to
create 10-member
ensemble

Number of Structures
4000

2000

Nontoxic Toxic



Expanded Cytotoxicity Dataset

* % correct (averaged over
the ensemble) = 69%

* % correct (consensus
prediction) = 71%

Nontoxic Toxic

Nontoxic 79 24
Toxic 35 68

* Not much

Improvement

* Insufficient sampling
of the nontoxics
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We Need More Positives

* The two datasets (775 vs 10,775 compounds)
are quite similar in terms of bit spectrum

* Normalized Manhattan distance = 0.016
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Important Structural Features

* The 10 most important features for predictive
ability across the ensemble leads to 43 unique
important bits

* This is a total of 66 structural features

- The toxic compounds are characterized by having a
slightly larger number of these features, on average
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Predicting Animal Toxicity

* We should not use cytotoxicity model to predict
animal toxicity?
* Normalized Manhattan distance = 0.037
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Predicting Animal Toxicity

* Performance really depends on the model
cutoff and our goals

Nontoxic Toxic

Nontoxic 43072 1683
Toxic 1748 140
Nontoxic Toxic
Nontoxic 34674 1158
Toxic 10146 665
Nontoxic Toxic
Nontoxic 20369 587
Toxic 24451 1236

Cutoff = 0.6, 93% correct I

Cutoff = 0.5, 75% correct I
Cutoff = 0.4, 46% correct I




NCGC Toxicity Dataset

* Considered 13 cell lines, plC50's
* 1334 compounds, including

- metals
- inorganics

* Classified into toxic / nontoxic using a cutoff
-mean + 2 *SD

* Built models for each cell line



NCGC — Class Distributions

* Cutoff values ranged from 3.56 t0 4.72
* Classes are severely imbalanced

* Developed ensembles of RF models

Number of Compounds
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True Positive Rate
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NCGC — ROC Curves

ampling the nontoxic class is an issue
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NCGC — ROC Curves

* Sampling the nontoxic class is an issue
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% Correct Classification
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NCGC — Model Performance
(Prediction Set)
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NCGC — Using the Models

* Predicted toxicity class for the Scripps
Cytotoxicity dataset (775 compounds) using
model built for NCGC Jurkat cell line

Nontoxic ToxXic . .
Nontoxic 67 49 Predictions for the Scripps
_ Cytotox dataset, using the
Toxic 432 22/ original cutoffs (32% correct)

Nontoxic Toxic Predictions for the Scripps

Nontoxic 26 90 Cytotox dataset, using the
Toxic 109 550 NCGC cutoff (75% correct)




Norm. Frequency

Norm. Frequency

Comparing NCGC & Scripps Datasets

* Comparing the datasets as a whole

NCGC Jurkat




Comparing NCGC & Scripps Datasets

* Comparing datasets class-wise

NCGC (Toxic)

GC (Nontoxic)

Scripps Cytotox (Toxic)

Scripps Cytotox (Nontoxic)




Important Features

* We consider the NCGC Jurkat cell line

* The 10 most important features for predictive
ability across the ensemble leads to 53 unique
important bits

* This is a total of 72 structural features

- The toxic compounds are characterized by having a
larger number of these features, on average
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Feature matches for example structure
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Important Features
Animal Toxicity vs. Cytotoxicity

* The ToxNet (Mouse/IP) and NCGC Jurkat
models have 130 important features in common

* These features are more common in the NCGC
toxic compounds than in the NCGC nontoxic
compounds

* The average number of these features present
in the NCGC dataset, overall, is 18.8

- Very low, might indicate that the NCGC model is not
going to be applicable to the ToxNet data
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Toxicity vs No. of Features - Mouse/IP

Ciguatoxin CTX 3C

* No correlation between No. of Important Features
the number of important
features and the pLD50
for the toxic class



Predicting Animal Toxicity

Nontoxic Toxic Predictions for the ToxNet

Nontoxic 12182 558 Mouse/IP dataset.

Toxic 32638 1265 29% correct overall.
70% correct on the toxic class

* Overall predictive performance is poor

* Possible causes

- Poor sampling of the nontoxics during training
- Feature distributions between the two datasets
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Model Deployment

Final models are deployed in our R WS
infrastructure

- Currently the Scripps Jurkat model is available
Model file can be downloaded

A web page client is available at

Incorporated the model into a Pipeline Pilot
workflow


http://www.chembiogrid.org/cheminfo/rws/mlist
http://www.chembiogrid.org/cheminfo/rws/scripps

Standardization Issues - Data

* Extracting data sets out of PubChem requires manual
curation and post-processing and aggregation of data

- No standard measures or column definitions
- Activity score and outcome only valid within one experiment
- Assay results are not globally comparable
- No standardization of assay format (e.g. type, readout, etc.)
- Limited ability to query PubChem for specific data sets
* rpubchem package for R is one option
- Need better way to access specific bulk data sets
- No aggregation of assay (sample) data by compound

* PubChem seems better suited to browse individual data
than access large standardized data sets



Standardization Issues - Models

* We've built lots of models and selected ones we
think are good

* Why should other people take our word?
- They shouldn't!

* Users should be able to easily benchmark
models against a certain dataset(s)

- Modelers should also do this, but users may have
their own internal benchmark datasets



Standardization Issues - Models

* As a community can we standardize on datasets”?
- NTP

* We need to decide what data characteristics are
we trying to test

- Structural features, cell types, mechanisms
* Models must be easily accessible

- Models should be downloadable
- Alternative methods for access should also be provided



Whats Next?

Further investigate differences in cell lines (cytotoxicity
vs. animal toxicity)

Relate structural features to mechanisms of toxicity
Incorporate these into models / build class models

- Different cell-lines vs. animal toxicity
- Structural features vs. mechanisms?

Based on prediction confidence and model
applicability, can we suggest alternative assays?

Use the vote fraction & common bit count to prioritize
compounds, which may be toxic

- Improve assessment of model applicability



Summary

* Lots of data available for model development
- Predictive ability ranges from poor to decent

* Applying models to predict other datasets is
dependent on several factors

- Are the features distributed in a similar manner
between training data & the new data?

- Do toxic/nontoxic labels transfer between datasets?
* More secondary data required

- But this is not the final solution since the NCGC
dataset is small but leads to (some) good models



Summary

* Fingerprints may not be the optimal way to get the best
predictive ability

- They do let us look at structural features easily
* We have investigated Molconn-Z descriptors
- Preliminary results don't indicate significant improvements

* We cannot globally model animal toxicity based on
cytotoxicity
- Animal data sets are biased to toxic compounds

- Different structural classes behave differently (mechanism of
action, metabolic effects
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Extras



An Example

* |dentifying frequent hitters
- Find CID's that are active in multiple assays

* Not (easily?) doable via PubChem

* Downloaded assay data

- Extracted CID, AID, Activity Outcome and Activity
Score

- Loaded into PostgreSQL database

* Web page allows you to paste CID's/SID's and
get a list of the assays they are active in



An Example

* Activity scores are not very rigorous
- So use what was measured

* But different assays use different column names
- Difficult to automatically extract IC50 etc.

* There is no specific update schedule for bioassay
data

- Our compound mirror is updated monthly
- PubChem assay data is not
- Can't fully sync our data



NCGC Jurkat - Important

+ Top 10 features Features Distributions

Median Mean
Toxic 9 9.8
Nontoxic 5 6.2
* Top 100 features

Median Mean
Toxic 32 41.53
Nontoxic 21 24.63




Handling Imbalanced Classes

y

PSET
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Are The Cytotox Classes Distinct?

* Poor predictive ability may be explained by the
lack of separation between toxic & nontoxic

* Normalized Manhattan distance = 0.017
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Are The Cytotox Classes Distinct?

* But the situation is a little better if we just look at
the important bits

* Normalized Manhattan distance = 0.06
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