Numerical Characterization of Structure-Activity Relationships from a Medicinal Chemists Point of View

Rajarshi Guha

School of Informatics Indiana University

National Medicinal Chemistry Symposium Pittsburgh, PA 15th June, 2008 Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Structure Activity Relationships

Assumptions

- Similar molecules will have similar activities
- Small changes in structure will lead to small changes in activity
- One implication is that SAR's are additive
- This is the basis for QSAR modeling

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Structure Activity Landscapes Melanocortin-4 receptor inhibitors

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Jtilization Predictive Models 3D models Chemical spaces

Summary

Tran, J.A. et al., Bioorg. Med. Chem. Lett., 2007, 15, 5166-5176

Structure Activity Landscapes

Rugged gorges or rolling hills?

- Small structural changes associated with large activity changes represent steep slopes in the landscape
 - Activity Cliffs
- But traditionally, QSAR assumes gentle slopes
- Machine learning is not very good for special cases

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

/isualization

Utilization Predictive Models 3D models Chemical spaces

Summary

Maggiora, G.M., J. Chem. Inf. Model., 2006, 46, 1535-1535

Characterizing the Landscape

Converting activity cliffs to numbers

- A cliff can be numerically characterized
- Structure-Activity Landscape Index (SALI)

$$\text{SALI}_{i,j} = \frac{|A_i - A_j|}{1 - sim(i,j)}$$

 Cliffs are characterized by elements of the matrix with very large values

Structure-Activity Landscapes Rajarshi Guha

Background

Defining & Using

/isualization

Utilization Predictive Models 3D models Chemical spaces

Visualizing the SALI Matrix

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Visualizing SALI Values

Alternatives?

- A heatmap is an easy to understand visualization
- Coupled with brushing, can be a handy tool
- A more flexible approach is to consider a network view of the matrix

The SALI graph

- Compounds are nodes
- Nodes *i*, *j* are connected if $SALI_{i,j} > X$
- Only display connected nodes

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Visualizing the SALI Graph

Nodes are ordered such that the tail node in an edge has lower activity than the head node Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Better Visualization

SALIViewer

- Java application for generating and visualizing SALI graphs
- Create SALI graphs from SMILES and activity data, using the CDK fingerprints
- Easily examine SALI graphs at different cutoffs
- Provides 2D depictions for nodes and edges
- Generate SALI curves

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Jtilization Predictive Models 3D models Chemical spaces

Better Visualization - SALIViewer

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Varying Fingerprint Methods

Shorter fingerprints will lead to more "similar" pairs
Requires a higher cutoff to focus on significant cliffs

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Varying the Similarity Metric

The similarity metric does not affect the SALI values

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Jtilization Predictive Models 3D models Chemical spaces

SALI Graphs & Predictive Models

- The graph view allows us to view SAR's and identify trends easily
- The aim of a QSAR model is to encode SAR's
- Traditionally, we consider the quality of a model in terms of RMSE or R²
- But in general, we're not as interested in RMSE's as we are in whether the model predicted something as more active than something else
 - What we want to have is the correct ordering
 - We assume the model is statistically significant

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

SALI Graphs & Predictive Models

Measuring model quality

- A QSAR model should easily encode the "rolling hills"
- A good model captures the most significant cliffs
- Can be formalized as

How many of the edge orderings of a SALI graph does the model predict correctly?

- Define S(X), representing the number of edges correctly predicted for a SALI network at a threshold X
- Repeat for varying X and obtain the SALI curve

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

SALI Graphs & Predictive Models

Measuring model quality

- A QSAR model should easily encode the "rolling hills"
- A good model captures the most significant cliffs
- Can be formalized as

How many of the edge orderings of a SALI graph does the model predict correctly?

- Define S(X), representing the number of edges correctly predicted for a SALI network at a threshold X
- Repeat for varying X and obtain the SALI curve

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

SALI Curves - An Example

Defining & Using Structure-Activity Landscape<u>s</u>

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

- Considered four datasets
- Developed linear regression models, using exhaustive search for feature selection
- Identify three models for each dataset
 - Minimum RMSE ("best")
 - Median RMSE
 - Maximum RMSE ("worst")
- Generate SALI curves for each model and summarize by dataset

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

- The initial and final portions of the curve are of interest
- It's also useful to summarize the whole curve
- We evaluate the area between the curve and the X-axis (SCI)

▶ $-1 \leq \mathsf{SCI} \leq 1$

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

/isualization

Utilization Predictive Models 3D models Chemical spaces

Defining & Using Structure-Activity Landscapes

Examining Any Type of Model ...

- Previous examples make use of predicted values from QSAR models
- We can consider any "prediction" that is supposed to track observed activity
 - Ranks
 - Energies
- Allows us to apply this approach to any type of computational model that predicts something
 - Docking
 - CoMFA
 - Pharmacophore

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models **3D models** Chemical spaces

Docking & CoMFA Models

Defining & Using

Structure-Activity Landscapes

The CoMFA model is nearly perfect!

Holloway, K. et al, *J. Med. Chem.*, **1995**, *38*, 305–317 Cavalli, A. et al, *J. Med. Chem.*, **2002**, *45*, 3844–3853

The SALI curve is a function of

- dataset
- descriptor space
- We can quantify a descriptor spaces ability to encode the structure-activity landscape using SALI graphs
 - What is the size of the graph as a function of SALI cutoff?
- The SALI approach allows us to investigate molecular representations that may not be directly accessible
- Work in progress

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

The SALI curve is a function of

- dataset
- descriptor space
- We can quantify a descriptor spaces ability to encode the structure-activity landscape using SALI graphs
 - What is the size of the graph as a function of SALI cutoff?
- The SALI approach allows us to investigate molecular representations that may not be directly accessible

Work in progress

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

The SALI curve is a function of

- dataset
- descriptor space
- We can quantify a descriptor spaces ability to encode the structure-activity landscape using SALI graphs
 - What is the size of the graph as a function of SALI cutoff?
- The SALI approach allows us to investigate molecular representations that may not be directly accessible
- Work in progress

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

A Type 2 SALI curve for the PDGFR dataset, comparing 3 different molecular representations

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

/isualization

Utilization Predictive Models 3D models Chemical spaces

What's Next?

 SALI graphs and curves represent a *framework* for exploring structure-* landscapes

Open questions

- Weighted SALI graphs (ADMET, synthetic feasibility)
- Is it correct to identify cliffs using fingerprints, and then predict cliffs using different descriptors?
- Can we use SALI curves to compare 3D and 2D descriptor spaces?
- Can we use SCI for feature selection?

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Conclusions

- The SALI is an effective way to numerically encode activity cliffs
- The network view of these values allows us to explore SAR's in an intuitive way
- Using the SALI curve allows us to compare predictive models in a manner that is intuitive for a medicinal chemist

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Acknowledgments

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Summary

John Van Drie

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Making Use of the SALI Graph

- ► A little difficult with a non-interactive graph
- We can investigate a series of transformations that increase (or decrease) activity
- Identify two types of SAR's
 - Broad
 - Detailed
 - Depends on what cutoff we choose
- These correspond somewhat to the continuous and discontinuous SAR's described by Peltason et al.

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

- 62 dihydroquinoline derivatives
- \blacktriangleright IC₅₀'s reported, some values were censored
- 50% SALI graph generated using 1052 bit BCI fingerprints

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

- Moving from ally or phenylethyl to ethyl causes a 6-fold increase in activity
- Reducing bulk at this position seems to improve activity
 - Pretty broad conclusion
- But ethyl is not much smaller than allyl
- We need more detail

07-20, 2000 nM

07-23, 2000 nM

07-17, 355 nM

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

07-15, 2000 nM

07-20, 2000 nM

07-18, 710 nM

07-17, 355 nM

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

- Suggests that electron density is also important
- Lower π density possibly correlates to increased activity
- Confirmed by $07-23 \rightarrow 07-18$
- ▶ 07-15 \rightarrow 07-17 is interesting since the change *increases* the bulk

- These observations match those made by Takahashi et al.
- More detailed graphs exhibit longer paths that focus on the bulk of side chains at the C4-α position
- A number of paths consider changes to the epoxide substitution
 - Usually of length 1
 - Highlights the fact that bulk at the C4 α has greater impact on activity than epoxide substitutions
- The SALI graph stresses the non-linearity of the SAR

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces

SALI Curves - Control Experiments

Scrambling

- Scramble the Y-variable and rebuild the model
- Evaluate the SALI curve
- Repeat 50 times and take the mean of the counts for a given cutoff

Noise

- Add uniform noise to each descriptor, rebuild the model
- We expect little variation in the plateau

Defining & Using Structure-Activity Landscapes

Rajarshi Guha

Background

Visualization

Utilization Predictive Models 3D models Chemical spaces