Chemical Space: Modeling Exploration & Understanding

Rajarshi Guha

School of Informatics Indiana University

16th August, 2006

Outline

2 Modeling & Algorithms

- Aspects of QSAR Modeling
- Exploring Chemical Space
- Adding Meaning to Chemical Information
- 3 Tool Development
 - CDK
 - R

Outline

Modeling & Algorithms

- Aspects of QSAR Modeling
- Exploring Chemical Space
- Adding Meaning to Chemical Information
- 3 Tool Development
 - CDK
 - R

Goals of Cheminformatics Research at IU

- Extend the state of the art in cheminformatics
- Extract chemistry, not just R^2 , q^2 et al.
- Provide intuitive and efficient ways to handle chemical information
- Supply expertise to bench chemists and non-computational chemists

Statistical Modeling of Chemical Information

• QSAR model development

- Lazy regression
- Ensemble descriptor selection
- Wavelet-based spectral descriptors
- Interpretation of QSAR models
- Measuring model applicability

Cheminformatics Algorithms

- R-NN curves
 - Outlier detection
 - Cluster cardinality
- LSH based applications
- Ensemble descriptor selection
- Interpretation techniques

Tools and Pipelines for Cheminformatics

- Contributions to the CDK
- Packages for R
 - rcdk
 - spe
 - fingerprint
 - spectral clustering
 - rpubchem (to come)
- Automated QSAR pipeline (collaboration with P&G)
- Development of workflows

Overview Aspects of QSAR Modeling Modeling & Algorithms Exploring Chemical Space Tool Development Adding Meaning to Chemical Informatic

Outline

2 Modeling & Algorithms

- Aspects of QSAR Modeling
- Exploring Chemical Space
- Adding Meaning to Chemical Information
- Tool DevelopmentCDK
 - R

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

QSAR Model Interpretation

Why interpret?

- Predictive ability is useful for screening
- Interpretation provides extra value
- Interpretability might be more useful than predictive ability
- Interpretability depends on modeling technique and descriptors involved

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Informatior

QSAR Model Interpretation

The trade-offs in interpretation

- Interpretability is usually a trade-off with accuracy
- OLS models are easily interpretable, not always accurate
- CNN models are usually black boxes, more accurate
- Some methods (RF) lie in between

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

Detailed Interpretation Methods

OLS Models

- Build a good model
- Run it through PLS
- The X-loadings indicate which descriptors are important
 - magnitude lets us rank them
 - sign lets us indicate the nature of their effects
- Allows us to identify effects of descriptors on a *molecule-wise* basis

Guha, R. et al., J. Chem. Inf. Model., 2005, 45, 321-333 Guha, R. et al., J. Chem. Inf. Comput. Sci., 2004, 44, 1440-1449

CNN Models

- Analogous to PLS based interpretations
- *Linearizes* the CNN
- Information is lost
- Resultant interpretations match the corresponding interpretations for an OLS model quite well

Overview Aspects of QSAR Modeling Modeling & Algorithms Exploring Chemical Space Tool Development Adding Meaning to Chemical Inform

Extensions of Interpretation Methods

- The CNN interpretation uses significant approximations and does not make full use of biases
- Develop interpretation techniques for other methods, RF in particular
- Ensemble descriptor selection to choose a subset that is *simultaneously* good for multiple model types
- Use these methods on real datasets

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

QSAR Model Applicability

Model Validation

- Goal is to test the reliability of the model
- Ensures that the model is not due to chance factors
- Based on dataset used to develop the model

Model Applicability

- Goal is to test the applicability of the model to new compounds
- Tells us: The model will predict the activity well (or not)
- Similar to confidence measures

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

What is Model Applicability

Question?

How will a model perform when faced with molecules that it has not been trained on or validated with?

Aspects

- Similarity to the TSET?
- Can we consider a *global* chemistry space?
- Structural or statistical similarity?
- Quantitative or qualitative?

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

How to Assess Model Applicability

Define Model Performance

Performance is measured by prediction residuals. The model performs well on a new molecule if it predicts its activity with low residual error.

Correlate 'X' With Performance

- 'X' could be similarity between a query molecule and the original training set
- 'X' could be derived from a cluster membership approach
- Alternatively, predict performance itself

Guha, R.; Jurs, P.C; J. Chem. Inf. Model., 2005, 45, 65-73

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

Nearest Neighbor Methods

- Traditional kNN methods are simple, fast, intuitive
- Applications in
 - regression & classification
 - diversity analysis
- Can be misleading if the *nearest* neighbor is far away
- *R*-NN methods may be more suitable

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

R-NN Curves for Diversity Analysis

The question ...

Does the variation of nearest neighbor count with radius allow us to characterize the location of a query point in a dataset?

The answer . . . *R*-NN curves

```
\begin{array}{l} D_{max} \leftarrow \max \text{ pairwise distance} \\ \textbf{for molecule } in \text{ dataset } \textbf{do} \\ R \leftarrow 0.01 \times D_{max} \\ \textbf{while } R \leq D_{max} \text{ do} \\ \text{ Find NN's within radius } R \\ \text{ Increment } R \\ \textbf{end while} \\ \textbf{end for} \\ \text{Plot NN count vs. } R \end{array}
```

Guha, R., et al., J. Chem. Inf. Model., 2006, 46, 1713-1772

Overview Aspects of QSAR Modeling Modeling & Algorithms Tool Development Adding Meaning to Chemical

R-NN Curves for Diversity Analysis

The question ...

Does the variation of nearest neighbor count with radius allow us to characterize the location of a query point in a dataset?

The answer . . . *R*-NN curves

 $\begin{array}{l} D_{max} \leftarrow \max \text{ pairwise distance} \\ \textbf{for molecule } in \text{ dataset } \textbf{do} \\ R \leftarrow 0.01 \times D_{max} \\ \textbf{while } R \leq D_{max} \text{ do} \\ \text{ Find NN's within radius } R \\ \text{ Increment } R \\ \textbf{end while} \\ \textbf{end for} \\ \text{Plot NN count vs. } R \end{array}$

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

Characterizing R-NN Curves

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

R-NN Curves and Outliers

Kazius, J.; McGuire, R.; Bursi, R.; J. Med. Chem. 2005, 48, 312-320

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

R-NN Curves and Clusters

R-NN curves are indicative of the number of clusters

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

R-NN Curves and Clusters

Counting the steps

- Essentially a curve matching problem
- All points will not be indicative of the number of clusters
- Not applicable for concentric clusters

Approaches

- Hausdorff / Fréchet distance
 - requires *canonical* curves
- RMSE from distance matrix
- Slope analysis

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

R-NN Curves and Their Slopes

Smoothed first derivative of the R-NN Curves

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

R-NN Curves and Their Slopes

Smoothed first derivative of the R-NN Curves

- Identifying peaks identifies the number of clusters
- Automated picking can identify spurious peaks

Overview Aspects of QSAR Modeling Modeling & Algorithms Tool Development

Exploring Chemical Space

Slope Analysis of R-NN Curves

Procedure

for i in molecules do Evaluate R-NN curve $F \leftarrow$ smoothed *R*-NN curve Evaluate F''Smooth F'' $N_{root,i} \leftarrow$ no. of roots of F''end for $N_{cluster} = [\max(N_{root}) + 1]/2$

Possible improvements

- Sample from the collection of R-NN curves
- Improve handling of concentric clusters

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

Preliminary Results

- Simulated 2D data
- Predicted k, followed by kmeans clustering using k
- Investigated similar values of k

ASW - average silhouette width, higher is better; k - number of clusters

Overview Aspects of QSAR Modeling Modeling & Algorithms Exploring Chemical Space Tool Development Adding Meaning to Chemical Information

Ontologies

What is an ontology?

- Defines a controlled vocabulary (keywords)
- Defines a set of relationships between them
- Allows for
 - meaning to be added to data and algorithms
 - automated inference of relationships
- An example is the Gene Ontology

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

Ontologies in Chemistry

What's available?

- No really comprehensive ontology available
- Some work is on to add chemistry semantics to biology-related ontologies

What can we do?

- Start small focus on one area of chemistry, descriptors
- The CDK currently provides an ontology for implemented descriptors
- Vocabulary includes
 - author
 - literature reference
 - class (molecular, atomic, bond)
 - type (geometric, electronic, ...)

Aspects of QSAR Modeling Exploring Chemical Space Adding Meaning to Chemical Information

How Can We Use Ontologies?

Allow interoperability of software

- Different program use different naming schemes
- Programs may be open- or close-source
- Annotation via dictionaries allows us to make conclusions regarding descriptors, suggest similar descriptors etc.

Utilize expertise from chemists

- Some descriptors are useful for certain properties
- Chemists who use models can *tag* descriptors as useful for a property
- Over time the tagging can be indicative of the utility of certain descriptors

CDK R

Outline

Modeling & Algorithms

- Aspects of QSAR Modeling
- Exploring Chemical Space
- Adding Meaning to Chemical Information
- 3 Tool Development
 - CDK
 - R

The Chemistry Development Kit

What does it do?

- Reads multiple file formats
- Calculates molecular descriptors (in progress)
 - Topologicals (Chi, Kappa, ...)
 - Geometric (Gravitational indices, MI, ...)
 - Hybrid (CPSA)
 - Global (BCUT, WHIM, RDF, ...)
- Provides access to statistical engines (R & Weka)
- Fingerprint calculation, 2D structure diagrams
- Kabsch alignment
- 3D coordinates and force fields (in progress)

Steinbeck, C. et al., *Curr. Pharm. Des.*, **2006**, *12*, 2111–2120 Steinbeck, C. et al., *J. Chem. Inf. Sci.*, **2003**, *43*, 493–500

CDK R

Contributions

Main areas of contributions

- Descriptor framework
- QSAR modeling framework (interface to R)
- Web service functionality
- Other areas include
 - Numerical surface areas
 - Rigid alignment
 - Descriptor ontology
 - Build system
 - QA, debugging, support

Cheminformatics and R

What is R?

- An open-source statistical environment for
 - model development
 - algorithm prototyping
- Open source version of Splus
 - Splus code runs (mostly) unchanged on R
- Provides a wide array of mathematical and statistical functionality
 - Linear models (OLS, robust regression, GLM, PLS)
 - Neural networks, random forests, SOM, SVM
 - Clustering methods (kmeans, agnes, pam, ...)
 - Optimization routines
 - Database interfaces
- When working with chemical data it would be nice to have access to cheminformatics functionality inside R

Cheminformatics and R

What is R?

- An open-source statistical environment for
 - model development
 - algorithm prototyping
- Open source version of Splus
 - Splus code runs (mostly) unchanged on R
- Provides a wide array of mathematical and statistical functionality
 - Linear models (OLS, robust regression, GLM, PLS)
 - Neural networks, random forests, SOM, SVM
 - Clustering methods (kmeans, agnes, pam, ...)
 - Optimization routines
 - Database interfaces
- When working with chemical data it would be nice to have access to cheminformatics functionality inside R

Some Cheminformatics Related Packages

Connecting R and the CDK

- R can access Java code via the SJava package
- This allows us to use CDK functionality within R
- The rcdk package provides user friendly wrappers to CDK classes and methods
- The result is that we can stay inside R and handle molecules directly

Fingerprints

- The fingerprint package handles binary fingerprint data from CDK and MOE
- Calculates similarity matrices using the Tanimoto metric
- Converts binary fingeprints to Euclidean vectors

CDK R

R Miscellanea

R as a Web Service

- A number of packages are available to access R via the web
- An effort is also underway to provide an explicit SOAP interface
- Very simple to access a remote R process via RServe
 - Currently under investigation as our statistical backend for workflows

Summary

Broadly focused on 2 areas ...

- Modeling
 - Predictive model development
 - Model interpreation and applicability
- Algorithm development
 - Exploring nearest neighbor methods
 - Descriptor selection and interpretation
 - Dictionaries and ontologies

• Underlying motiviation is the extraction of *chemistry* from the numbers and making it available

Collaborations . .

- More brains are useful
- Always on the lookout for data

Summary

Broadly focused on 2 areas ...

- Modeling
 - Predictive model development
 - Model interpreation and applicability
- Algorithm development
 - Exploring nearest neighbor methods
 - Descriptor selection and interpretation
 - Dictionaries and ontologies

• Underlying motiviation is the extraction of *chemistry* from the numbers and making it available

Collaborations . .

- More brains are useful
- Always on the lookout for data

CDK R

Summary

Broadly focused on 2 areas ...

- Modeling
 - Predictive model development
 - Model interpreation and applicability
- Algorithm development
 - Exploring nearest neighbor methods
 - Descriptor selection and interpretation
 - Dictionaries and ontologies

• Underlying motiviation is the extraction of *chemistry* from the numbers and making it available

Collaborations . . .

- More brains are useful
- Always on the lookout for data